Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T18:51:41.294Z Has data issue: false hasContentIssue false

Solution NMR Spectroscopy as a Useful Tool to Investigate Colloidal Nanocrystal Dispersions from the Capping Ligand's Point of View

Published online by Cambridge University Press:  26 February 2011

Jose C Martins
Affiliation:
Jose.Martins@UGent.beUniversiteit GentDepartment of Organic ChemistryKrijgslaan 281 S4GentB-9000Belgium3292644469
Jose C Martins
Affiliation:
Jose.Martins@UGent.beUniversiteit GentDepartment of Organic ChemistryKrijgslaan 281 S4GentB-9000Belgium3292644469
Iwan Moreels
Affiliation:
Jose.Martins@UGent.beUniversiteit GentDepartment of Organic ChemistryKrijgslaan 281 S4GentB-9000Belgium3292644469
Zeger Hens
Affiliation:
Jose.Martins@UGent.beUniversiteit GentDepartment of Organic ChemistryKrijgslaan 281 S4GentB-9000Belgium3292644469
Get access

Abstract

Colloidal semiconductor nanocrystals or quantum dots are an important building block in bottom-up nanotechnology. They consist of an inorganic, crystalline core surrounded by a monolayer of organic ligands. As these ligands can be modified or exchanged for others, they provide a convenient way to give the quantum dots functionality. Here, we show that solution NMR techniques, including diffusion pulsed field gradient spectroscopy, is a very useful tool to investigate the ligands of colloidal nanocrystals. This is demonstrated using InP quantum dots with trioctylphospine oxide ligands as an example. Combining 1H-13C HSQC spectroscopy with pulsed field gradient diffusion NMR, an unequivocal identification of the resonances of the bound ligands is possible. This leads to the determination of the diffusion coefficient of the nanocrystals in solution and allows to verify capping exchange procedures. By calibrating the surface area of the NMR resonances using a solute of known concentration, the density of ligands at the nanocrystal surface can be quantified. We could demonstrate that a dynamic equilibrium exists between bound and free ligands. Analysis of the corresponding adsorption isotherm - determined using 1H NMR - leads to an estimation of the free energy of adsorption and the free energy of ligand-ligand interaction at the nanocrystals surface. Similar investigations are in progress on capped PbSe and ZnO2 nanoparticles. Preliminary results strongly support the generic nature of the approach described for the case of TOPO capped InP nanocrystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Ann. Rev. Mat. Sci. 2000, 30, 545.Google Scholar
2. Talapin, D.; Murray, C. Science 2005, 310, 86.Google Scholar
3. Nath, N.; Chilkoti, A. Analytical Chemistry 2002, 74, 504.Google Scholar
4. Hughes, M.; Xu, Y.-J.; Jenkins, P. Nature 2005, 437, 1132.Google Scholar
5. Chan, W.; Nie, S. Science 1998, 281, 2016.Google Scholar
6. Cook, R. MRS Bulletin 2005, 30, 694.Google Scholar
7. Murray, C. B.; Norris, D. J.; Bawendi, M.G. J. Am. Chem. Soc. 1993, 115, 8706.Google Scholar
8. Micic, O. I.; Jones, C. J.; Sprague, J. R.; Nozik, A. J. J. Phys. Chem. 1994, 98,4966.Google Scholar
9. Talapin, D.; Rogach, A.; Kornowski, A.; Haase, M.; Weller, H. Nano Lett. 2001, 1, 207.Google Scholar
10. Du, H.; Chen, C. L.; Krishnan, R.; Krauss, T. D.; Wise, F. W.; Thomas, M. G.; Silcox, J. Nano Lett. 2002, 2, 1321.Google Scholar
11. Donega, C. D.; Hickey, S. V.; Vanmaekelbergh, D.; Meijerink, A. J. Phys. Chem. B 2003, 107, 489.Google Scholar
12. Hens, Z.; Tallapin, D.; Weller, H.; Vanmaekelbergh, D. App. Phys. Lett. 2002, 81, 4245.Google Scholar
13. Hens, Z.; Moreels, I.; Martins, J. C. ChemPhysChem 2005, 5, 2578.Google Scholar
14. Tomaselli, M.; Yarger, J. L.; Bruchez, M.; Havlin, R. H.; deGraw, D.; Pines, A.; Alivisatos, A. P. J. Chem. Phys. 1999, 110, 8861.Google Scholar
15. Masel, R. I. In Principles of Adsorption and Reaction on Solid Surfaces; John Wiley & Sons: New York, 1996.Google Scholar
16. Moreels, I.; Martins, J. C.; Hens, Z. ChemPhysChem 2006, 6, 1028.Google Scholar
17. Alivisatos, A. P. Nature 2005, 437, 664.Google Scholar