Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T13:49:26.784Z Has data issue: false hasContentIssue false

Solution Growth and Optical Characterization of Thin Films with ZnO1-xSx and ZnO Nanorods in Core-Shell like Nanostructure for Solar Cell Application

Published online by Cambridge University Press:  20 August 2012

Ratheesh R. Thankalekshmi
Affiliation:
Department of Electrical and Computer Engineering and Center for Autonomous Solar Power (CASP), Binghamton University, State University of New York, Binghamton, NY, 13902, USA
A. C. Rastogi
Affiliation:
Department of Electrical and Computer Engineering and Center for Autonomous Solar Power (CASP), Binghamton University, State University of New York, Binghamton, NY, 13902, USA
Get access

Abstract

ZnO films with a nanostructure dominated by 150-200 nm size highly c-axis oriented nanorod arrays were deposited by hydrothermal synthesis over surface activated quartz substrates. Sulfur infiltration and growth of ZnO1-xSx over ZnO nanorods was carried out by chemiplating process using slow hydrolysis of thiourea solution at 95°C. Formation of ZnO1-xSx nanocrystals of 20-30 nm size over (0001) facets of the ZnO rods is shown. With progressive growth of ZnO1-xSx nanocrystal and full ZnO nanorod coverage, the formation ZnO/ZnO1-xSx core –shell nanostructure is realized. X-ray photoelectron spectroscopy analysis shows chemical shifts in O1s and S2p spectra confirming the formation of ZnO1-xSx (0.1≤x≤0.2) nanocrystal shell. Reduction in optical band gap from a 3.24 eV for ZnO nanorod core to 2.78 eV for the ZnO1-xSx shell is consistent with the band gap bowing effect due to sulfur addition over the ZnO nanorod surface.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhai, T. Y., Li, L., Ma, Y., Liao, M., Wang, Xi, Fang, X. S., Yao, J., Bando, Y. and Golberg, D., Chem. Soc. Rev. 40, 2986 (2011).Google Scholar
2. Schrier, J., Demchenko, D.O., and Wang, L.W., Nano Lett. 7, 2377 (2007).Google Scholar
3. Wang, K., Chen, J. J., Zeng, Z. M., Tarr, J., Zhou, W. L., Zhang, Y., Yan, Y. F., Jiang, C. S., Pern, J. and Mascarenhas, A., Appl. Phys. Lett. 96, 123105 (2010).Google Scholar
4. Xu, C. K., Shin, P., Cao, L.L. and Gao, D., J. Phys. Chem. C 114, 125 (2010).Google Scholar
5. Bae, S. Y., Seo, H.W. and Park, J., J. Phys. Chem. B 108, 5206 (2004).Google Scholar
6. Vayssieres, L., Chaneac, C., Tronc, E. and Jolivet, J., J.Colloid. Interface Sci. 205, 205 (1998).Google Scholar
7. Law, M., Greene, L. E., Johnson, J. C., Saykally, R. and Yang, P., Nature Mater. 4, 455 (2005).Google Scholar
8. Greene, L. E., Law, M., Tan, D. H., Montano, M. and Goldberger, J., Nano Lett. 5, 1231 (2005).Google Scholar
9. Baxter, B., Walker, A. M., Ommering, K. V. and Aydil, E. S., Nanotechnology 17, S304 (2006).Google Scholar
10. Meyer, B. K., Polity, A., Farangis, B., He, Y., Hasselkamp, D., Kramer, T., and Wang, C., Appl. Phys. Letts. 85, 4929 (2004).Google Scholar
11. Zhang, X., Yan, Z., Zhao, J., Qin, Zi. and Zhang, Y., Mat. Letts. 63, 444 (2009).Google Scholar
12. Kim, D.P., Kim, I. and Kwon, K.H., Thin Solid Films 459, 131 (2004).Google Scholar
13. Yoo., Y.Z, Jin, Z. W., Chikyow, T., Fukumura, T., Kawasaki, M. and Koinuma, H., Appl. Phys. Lett. 81, 3798 (2002).Google Scholar