Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T01:06:09.316Z Has data issue: false hasContentIssue false

Soluble Conducting Polythiophenes for Charge Dissipation in Electron Beam Lithography

Published online by Cambridge University Press:  16 February 2011

Wu-Song Huang*
Affiliation:
IBM Microelectronics Division, Hopewell Junction, New York 12533
Get access

Abstract

In electron beam lithography, charging on photoresist usually causes image distortion and placement error. To dissipate the charge, a conductive polymeric layer can be introduced either over or under the photoresist coating. In this paper, we will discuss the approach of using toluene and xylene soluble polyalkylthiophcne in combination with photoacid generator as a discharge underlayer or interlayer beneath photoresist to dissipate the accumulated charge during li-bcam exposure. We will also discuss the use of water soluble acid or ammonium salt form of poly 3- (cthanesulfonate) thiophene as discharge. toplayer. During the resist image developing process, the toplayer will be removed by aqueous base. Therefore, it is advantageous to use discharge toplayer due to its simplicity. In this study, the salt and acid form of poly 3- (ethanesulfonate) thiophene was synthesized through chemical polymerization of the corresponding methanesulfonate ester. It exhibits the same properties as that of electrochemically synthesized polymer reported in the literature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Saitou, N., Munakata, C. and Maekawa, A., Japan J. Appl. Phys. 10, 351 (1971).Google Scholar
2. Langner, G.O., Proc. Microcircuit Eng. '79, 261 (1979).Google Scholar
3. Cummings, K.D. and Kiersh, M., J. Vac. Sci. Technol. B, 7 (6), 1536 (1989).Google Scholar
4. Iloh, H., Nakamura, K. and Ilayakawa, H., J. Vac. Sci. Tochnol. B, 7 (6), 1532 (1989).Google Scholar
5. Yodokoro, Y. and Watanabe, H., J. Vac. Sci. Technol. B, 6, 357 (1988).Google Scholar
6. Watanabe, H. and Todokoro, Y., IEEE Transaction on Electron Devices, 36, 474 (1989).Google Scholar
7. Tono-Oka, Y., Sakanoto, K., Honda, T., Matsumoto, I.I. and Lida, Y., SPIE, 1263, 199 (1990).Google Scholar
8. Kawasaki, Y. et. al. Japan Patent 62,113,134.Google Scholar
9. Angelopoulos, M., Shaw, J.M., Kaplan, R.D. and Perrcault, S., J. Vac. Sci. Technol. B, 7 (6), 1519 (1989).Google Scholar
10. Angelopoulos, M., Shaw, J.M., Lec, K.-L., Huang, W.S., Lecorre, M.-A. and Tissier, M., J. Vac. Sci. Technol. B, 9 (6), 3428 (1991).Google Scholar
11. Chiang, C. K., Druy, M. A., Gau, S. C., Ileeger, E. J., Louis, E. J., MacDiarmid, A. G., Park, Y. W. and Shirakawa, H., J. Am. Chem. Soc, 100, 1013, (1978).Google Scholar
12. Tourillon, G. and Garnier, F., J. Electrochem. Soc. 130, 2043 (1983).Google Scholar
13. Jen, K.Y., Miller, G.G. and Elsenbaumcr, R. L., J. Chem. Soc. Chem. Commun. 1346 (1986).Google Scholar
14. Patil, A.O., Ikenoue, Y., Wudl, F., Heeger, A.J., J. Am. Chem. Soc. 109, 1858 (1987).Google Scholar
15. Clark, T.C., Krounbi, M.T., Lee, V.Y. and Street, G.B., J. Chem. Soc, Chem. Commun. 8, 384 (1981).CrossRefGoogle Scholar
16. Pitchumani, S. and Willig, F., J. Chem. Soc, Chem. Commun. 13, 977 (1979).Google Scholar
17. Angelopoulos, M., Shaw, J.M., Huang, W.S. and Kaplan, R.D., Mol. Cryst. Liq. Cryst. 189, 221 (1990).Google Scholar
18. Crivello, I.V. and Lam, J.H.W., Macromolcc. 10, 1307 (1977).Google Scholar
19. Crivello, I.V. and Lam, J.H.W., J. Polym. Chem. Ed., 17, 977 (1979).Google Scholar
20. Saeva, F.D. and Morgan, B.P., J. Am. Chem. Soc 106, 421 (1984).CrossRefGoogle Scholar
21. Huang, W.S. and Park, J.M., Electrode Materials and Process for Energy Conversion and Storage, The Electrochemical Society Inc. Pennington, NJ, 87–12, 100 (1987).Google Scholar
22. Huang, W.S., Angelopoulos, M. and Humphrey, B.D., Proceedings of the SPE, ANTEC ' 91, 788 (1991).Google Scholar
23. Patii, A.O., Ikenoue, Y., Basescu, N., Colaneri, N., Chen, J., Wudl, F. and Heeger, A.J., Synth. Met. 20, 151 (1987).Google Scholar
24. Ikenoue, Y., Saida, Y., Kira, M.-A., Tomozawa, H., Yashima, H. and Kobayashi, M., J. Chem. Soc. Chem. Commun. 1694 (1990).Google Scholar
25. Miyazak, M., Saitou, N. and Munakata, C., J. Phys. E, 14, 194 (1981).CrossRefGoogle Scholar
26. Huang, W.S., Angelopoulos, M., White, J.R. and Park, J.M., Mol. Cryst. Liq. Cryst., 189, 227 (1990).Google Scholar
27. Huang, W.S., Angelopoulos, M., Park, J.M. and White, J.R., Procedings of SPE, ANTEC ' 91, 864 (1991).Google Scholar
28. Gottesfeld, S., Uribe, F.A. and Armes, S.P., J. Electrochem. Soc. 139, L14 (1992).CrossRefGoogle Scholar
29. Schering Subtraganth Compact CP product information sheet, Beator, K., Beussel, B. and Grapentin, H.-J., Metalloberfláche, 46, 9 (1992).Google Scholar