Skip to main content Accessibility help

Solidification Modeling of Bulk Amorphous Alloys

  • Sang Bok Lee (a1) and Nack J. Kim (a1)


Classical heterogeneous nucleation theory coupled with DTA data has been used to closely estimate the crystallization behavior of continuously cooled bulk metallic glass (BMG) alloys. Continuous cooling transformation and time temperature transformation diagrams of three BMG alloys, Zr41.2Ti13.8Cu12.5Ni10Be22.5, Cu47Ti33Zr11Ni6Si1Sn2 and Mg65Cu25Y10 alloys, have been calculated. The critical cooling rates Rc of three alloys were calculated to be 1.7 K/s, 242 K/s and 36 K/s for Zr41.2Ti13.8Cu12.5Ni10Be22.5, Cu47Ti33Zr11Ni6Si1Sn2 and of Mg65Cu25Y10 alloys, respectively, which match well with the experimental values. We conclude that heterogeneous nucleation is more favorable than homogeneous nucleation for the formation of crystals during cooling of BMG alloy liquids. Our approach can be applied to the analyses of crystallization kinetics of BMG alloys with a wide range of critical cooling rates during continuous cooling as well as isothermal annealing.



Hide All
1. Park, W. W., You, B. S., and Kim, N. J., Metals and Materials 5, 593 (1999).
2. Lee, J. S., Lee, E. S., Park, W. J., Jung, J. Y., Ahn, S., and Kim, N. J., Metals and Materials 5, 141 (1999).
3. Fleury, E., Lee, S. M., Kim, W. T., and Kim, D.H., Metals and Materials 6, 415 (2000).
4. Peker, A. and Johnson, W. L., Appl. Phys. Lett. 63, 2342 (1993).
5. Inoue, A., Nishiyama, N., and Matsuda, N., Mater. Trans. JIM 37, 181 (1996).
6. Turnbull, D., Contemp. Phys. 10, 473 (1969).
7. Uhlmann, D. R., J. Non-Cryst. Solids 7, 337 (1972).
8. A Davies, H., Phys. Chem. Glasses 17, 159 (1976).
9. Kim, Y. J., Metals and Materials 1, 85 (1995).
10. Kim, Y. J., Busch, R., Johnson, W. L., Rulison, A. J., and Rhim, W. K., Appl. Phys. Lett. 68, 1057 (1996).
11. Masuhr, A., Waniuk, T. A., Busch, R., and Johnson, W. L., Phys. Rev. Lett. 82, 2290 (1999).
12. Busch, R., Masuhr, A., and Johnson, W. L., Mater. Sci. & Egi. A304–306, 97 (2001).
13. Lee, S. B., Kim, D., and Kim, N. J., J. of Metastable and Nanocryst. Mater. 15–16, 433 (2003).
14. Kelly, T.F., Cohen, M., and Vander Sande, J.B., Metall. Trans. A15, 819 (1984).
15. Lee, E.S. and Ahn, S., Acta Metall. Mater. 42, 3231 (1994).
16. Hirth, J. P., Metall. Trans. A9, 401 (1978).
17. Turnbull, D., J. Chem. Phys. 20, 411 (1952).
18. Assadi, H. and Schroers, J., Acta Mater. 50, 89 (2002).
19. Inoue, A., Kato, A., Zhang, T., Kim, S.G. and Masumoto, T., Mater. Trans. JIM 32, 609 (1991).
20. Busch, R., Liu, W., and Johnson, W.L., J. Appl. Phys. 83, 4134 (1998).
21. Glade, S.C. and Johnson, W.L., J. Appl. Phys. 87, 7249 (2000).
22. Bossuyt, S., Scrip. Mater. 44 2781, (2001).
23. Park, E. S., Lim, H. K., Kim, W. T., and Kim, D. H., J. Non-Crys. Solids 298, 15 (2002).
24. Nishiyama, N. and Inoue, A., Acta Mater. 47, 1487 (1999).
25. Schroers, J., Wu, Y., Busch, R., and Johnson, W. L., Acta Mater. 49, 2773 (2001).

Solidification Modeling of Bulk Amorphous Alloys

  • Sang Bok Lee (a1) and Nack J. Kim (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed