Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-12T01:23:25.725Z Has data issue: false hasContentIssue false

Solid State Reaction of Sputter Deposited Crystalline Multilayers of Ni and Zr

Published online by Cambridge University Press:  26 February 2011

K. M. Unruh
Affiliation:
W. M. KECK Laboratory for Engineering Materials, California Institute of Technology, Pasadena, CA 91125
W. J. Meng
Affiliation:
W. M. KECK Laboratory for Engineering Materials, California Institute of Technology, Pasadena, CA 91125
W. L. Johnson
Affiliation:
W. M. KECK Laboratory for Engineering Materials, California Institute of Technology, Pasadena, CA 91125
A. P. Thakoor
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
S. K. Khanna
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
Get access

Abstract

We have prepared sputtered metallic films comprised of alternating layers of pure Ni and Zr to a total thickness of several microns. Due to the negative beat of mixing of crystalline Ni and Zr and a significant intermixing rate we have been able to form an amorphous Ni-Zr phase by a solid state reaction. In this work we report the conditions under which a substantial fraction of amorphous material may be formed. The extent of the reaction itself as a function of time has also been monitored.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See e.g. Lieberman, B. H., in Amorptbous Metallic Alloys, edited by Luborsky, F. E. (Butterworthe, London, 1983), pp. 2641.Google Scholar
2. Yeh, X. L., Samwer, K., and Johnson, W. L., Appl. Phys. lett. 42, 242 (1983).Google Scholar
3. Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).Google Scholar
4. Schwarz, R. B., Wong, K. L., Johnson, W. L. and Clemens, B. M., J. Non-Cryst. Sol. 61&62, 129 (1984).Google Scholar
5. Clemens, B. M., Johnson, W. L., and Schwarz, R. B., J. Non-Cryst. Sol. 61&62, 817 (1984).CrossRefGoogle Scholar
6. Van Rossum, M., Nicolet, M.-A., and Johnson, W. L., Phys. Rev. B 29, 5498 (1984).CrossRefGoogle Scholar
7. See e.g. Claire, A. D. Le, J. Nucl. Mat. 69, 70 (1978).CrossRefGoogle Scholar
8. Thakoor, A. P., Khanna, S. K., Williams, R. M., and Landel, R. F., J. Vac. Sci. Technol. Al, 520 (1983).CrossRefGoogle Scholar
9. Thornton, J. A. and Hoffman, D. W., J. Vac. Sci. Technol. 14, 164 (1977); D. W. Hoffman and J. A. Thornton, Thin Solid Films 45, 387 (1977).Google Scholar
10. Guinier, A., X-Ray Diffraction (W. H. Freeman and Company, San Francisco, 1963).Google Scholar
11. Hood, G. M. and Schultz, R. J., Phil. Mag. 26, 329 (1972).CrossRefGoogle Scholar
12. Kittel, C., Solid State Physics (John Wiley & Sons, New York, 1976).Google Scholar