Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T16:11:24.483Z Has data issue: false hasContentIssue false

Solid State NMR Studies of the Aluminum Hydride Phases

Published online by Cambridge University Press:  01 February 2011

Son-Jong Hwang
Affiliation:
sonjong@cheme.caltech.edu, California Institute of Technology, The Div of Chem and Chem Eng., 1200 E. California Blvd., Pasadena, CA, 91125, United States, 626-395-2323, 626-568-8743
Robert C. Bowman
Affiliation:
rbowman@jpl.nasa.gov, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, United States
Jason Graetz
Affiliation:
graetz@bnl.gov, Brookhaven National Laboratory, Department of Energy Science and Technology, Upton, NY, 11973, United States
J. J. Reilly
Affiliation:
jreillys@bnl.gov, Brookhaven National Laboratory, Department of Energy Science and Technology, Upton, NY, 11973, United States
Get access

Abstract

Several solid state NMR techniques including magic-angle-spinning (MAS) and multiple-quantum (MQ) MAS experiments have been used to characterize various AlH3 samples. MAS-NMR spectra for the 1H and 27Al nuclei have been obtained on a variety of AlH3 samples that include the β- and γ- phases as well as the most stable α-phase. While the dominant components in these NMR spectra correspond to the aluminum hydride phases, other species were found that include Al metal, molecular hydrogen (H2), as well as peaks that can be assigned to Al-O species in different configurations. The occurrence and concentration of these extraneous components are dependent upon the initial AlH3 phase composition and preparation procedures. Both the β-AlH3 and γ-AlH3 phases were found to generate substantial amounts of Al metal when the materials were stored at room temperature while the α-phase materials do not exhibit these changes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brower, F.M., Matzek, N.E., Reigler, P.F., Rinn, H.W., Roberts, C.B., Schmidt, D.L., Snover, J.A., Terada, K., J. Am. Chem. Soc. 98, 2450 (1976).Google Scholar
2. Sandrock, G., Reilly, J., Graetz, J., Zhou, W., Johnson, J., Wegrzyn, J., Appl. Phys. A 80, 687 (2005).Google Scholar
3. Graetz, J. and Reilly, J.J., J. Phys. Chem. B 109, 22181 (2005).Google Scholar
4. Graetz, J., Reilly, J., Sandrock, G., Johnson, J., Zhou, W.M., and Wegrzyn, J., In Advanced Materials for Energy Conversion III, edited by Chandra, D., Petrovic, J. J., Bautista, R., and Imam, A. (The Minerals, Metals, and Materials Society, Warrendale, PA, 2006) pp. 5763.Google Scholar
5. Turley, J. W. and Rinn, H. W., Inorg. Chem. 8, 18 (1968).Google Scholar
6. Barnes, R. G., In Hydrogen in Metals III, Edited by. Wipf, H., (Springer-Verlag, Berlin, 1997) pp. 93151.Google Scholar
7. Zogal, O. J., Stalinski, B., and Idziak, S., Z. Physk. Chem. N.F. 145, 167 (1985).Google Scholar
8. Zogal, O. J., Punkkinen, M., Ylinen, E. E., and Stalinski, B., J. Phys.: Condens. Matter 2, 1941 (1990).Google Scholar
9. Zogal, O. J., Vajda, P., Beuneu, F., and Pietraszko, A., Eur. Phys. J. B 2, 451 (1998).Google Scholar
10. Baranowski, B. and Tkacz, M., Z. Physk. Chem. N.F. 135, 27 (1983).Google Scholar
11. Bennett, A.E., Rienstra, C.M., Auger, M., Lakshmi, K.V., Griffin, RG., J. Chem. Phys. 103, 6951 (1995).Google Scholar
12. Frydman, L., Harwood, J.S., J. Am. Chem. Soc., 117, 5367, (1995).Google Scholar
13. Amoureux, J.P.; Fernandez, C. Solid State NMR, 10, 211 (1998).Google Scholar
14. Jakobsen, H.J., Skibsted, J., Bildsoe, H., Nielsen, N.C., J. Magn. Reson. 85, 173 (1989).Google Scholar
15. Andrew, E.R., Hinshaw, W.S., Tiffen, R.S., J. Magn. Reson. 15, 191 (1974).Google Scholar
16. Keliberg, L., Bildsoe, H., Jakobsen, H.J., J. Chem. Soc. Chem. Commun. 19, 1294 (1990).Google Scholar
17. Wiench, J.W., Balema, V.P., Pecharsky, V.K., Pruski, M., J. Solid State Chem. 177, 648 (2004).Google Scholar
18. Amoureux, J.P., Fernandez, C., Carpentier, L., Cochon, E., Phys. Stat. Sol. (a) 132, 461 (1992).Google Scholar
19. Orimo, S., Nakamori, Y., Kato, T., Brown, C., and Jensen, C. M., Appl. Phys. A 83, 5 (2006).Google Scholar