Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-29T16:44:10.953Z Has data issue: false hasContentIssue false

Solid State Dynamics of C60 And C70 Revealed by Carbon-13 NMR

Published online by Cambridge University Press:  28 February 2011

R. Tycko
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave. Murray Hill, NJ 07974
G. Dabbagh
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave. Murray Hill, NJ 07974
R. C. Haddon
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave. Murray Hill, NJ 07974
D. C. Douglass
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave. Murray Hill, NJ 07974
A. M. Mujsce
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave. Murray Hill, NJ 07974
M. L. Kaplan
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave. Murray Hill, NJ 07974
A. R. Kortan
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave. Murray Hill, NJ 07974
Get access

Abstract

Carbon-13 NMR spectra of powder samples of pure C60 and of a mixture of C60 and C70 provide information about molecular motions in the solid state. At room temperature, C60 molecules rotate rapidly and isotropically. The transition from a rapidly rotating to a stationary (on the time scale of the experiment) system occurs over a temperature range from 120 K to 60 K, suggesting a distribution of activation energies. C70 molecules also rotate rapidly at room temperature, but more anisotropically.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., and Smalley, R.E., Nature 318, 162 (1985).Google Scholar
2. Kratschmer, W., Lamb, L.D., Fostiropoulos, K., and Huffman, D.R., Nature 347, 354 (1990).Google Scholar
3. Haufler, R.E., Conceicao, J., Chibante, L.P.F., Chai, Y., Byrne, N.E., Flanagan, S., Haley, M.M., O’Brien, S.C., Pan, C., Xiao, Z., Billups, W.E., Ciufolini, M.A., Hauge, R.H., Margrave, J.L., Wilson, L.J., Curl, R.F., and Smalley, R.E., J. Phys. Chem. 94, 8634 (1990).CrossRefGoogle Scholar
4. Tycko, R., Haddon, R.C., Dabbagh, G., Glarum, S.H., Douglass, D.C., and Mujsce, A.M., J. Phys. Chem., in press.Google Scholar
5. Yannoni, C.S., Johnson, R.D., Meijer, G., Bethune, D.S., and Salem, J.R., J. Phys. Chem., in press.Google Scholar
6. Mehring, M., “Principles of High Resolution NMR in Solids”, (Springer-Verlag, New York, 1983).Google Scholar
7. Duncan, T.M., “A Compilation of Chemical Shift Anisotropics”, (Farragut Press, Chicago, 1990).Google Scholar
8. Pschorn, O. and Spiess, H.W., J. Magn. Reson. 39, 217 (1980).Google Scholar