Skip to main content Accessibility help
×
Home

Sol-Gel Process Derived Superhydrophobic Silica Thin Films for Antistiction of MEMS Devices

  • ChingPing Wong (a1), Lingbo Zhu (a2), Dennis W Hess (a3) and C. P. Wong (a4)

Abstract

Based on the theory of superhydrophobicity for low surface energy coatings, we describe a superhydrophobic antistiction silica coating for MEMS devices. The process uses a novel sol-gel process sequence with a eutectic liquid as a templating agent. The eutectic liquid displays negligible vapor pressure and very low melting point (12°C at ambient conditions) to reduce solvent loss during the high speed spincoating process. After a fluoroalkyl silane treatment, superhydrophobicity is achieved on the as-prepared silica thin film. The solvent can be extracted after the gelation and aging processes. Spin speed effect, eutectic liquid:TEOS ratio in the solution were studied in order to optimize the surface roughness to ensure excellent super-hydrophobicity. Comparison of the silica thin films with silicon pillar surfaces showed that superhydrophobicity for the traditional sol-gel derived silica films demonstrated significant improvement, especially under humid conditions. The AFM force curve obtained with a tipless probe showed that the interaction force is greatly reduced on a rough silica superhydrophobic surface. This result offers great potential to reduce stiction failures in MEMS devices.

Copyright

References

Hide All
1 Xiu, Y., Zhu, L., Hess, D., and Wong, C. P., “US patent pending,” 2006.
2 Barthlott, W. and Neinhuis, C., Planta, vol. 202, pp. 18, 1997.
3 Wu, X. F. and Shi, G. Q., Nanotechnology, vol. 16, pp. 20562060, 2005.
4 Guo, Z.-G., Zhou, F., Hao, J.-C., Liang, Y.-M., Liu, W.-M., and Huck, W. T. S., Applied Physics Letters, vol. 89, pp. 081911/1–081911/3, 2006.
5 Xiu, Y., Zhu, L., Hess, D. W., and Wong, C. P., Abstracts of Papers, 231st ACS National Meeting, Atlanta, GA, United States, March 26-30, 2006, pp. IEC196, 2006.
6 Nakajima, A., Fujishima, A., Hashimoto, K., and Watanabe, T., Advanced Materials, vol. 11, pp. 13651368, 1999.
7 Duparre, A., Flemming, M., Steinert, J., and Reihs, K., Applied Optics, vol. 41, pp. 32943298, 2002.
8 Wang, S. T., Feng, L., and Jiang, L., Advanced Materials, vol. 18, pp. 767-+, 2006.
9 Zhu, L., Xiu, Y., Xu, J., Hess, D. W., and Wong, C. P., presented at Electronic Components and Technology Conference, San Diego, CA, 2006.
10 Zhai, L., Cebeci, F. C., Cohen, R. E., and Rubner, M. F., Nano Letters, vol. 4, pp. 13491353, 2004.
11 Jisr, R. M., Rmaile, H. H., and Schlenoff, J. B., Angewandte Chemie, International Edition, vol. 44, pp. 782785, 2005.
12 Ma, M. L., Mao, Y., Gupta, M., Gleason, K. K., and Rutledge, G. C., Macromolecules, vol. 38, pp. 97429748, 2005.
13 Ma, M. L., Hill, R. M., Lowery, J. L., Fridrikh, S. V., and Rutledge, G. C., Langmuir, vol. 21, pp. 55495554, 2005.
14 Zhu, L. B., Xiu, Y. H., Xu, J. W., Tamirisa, P. A., Hess, D. W., and Wong, C. P., Langmuir, vol. 21, pp. 1120811212, 2005.
15 Sun, T., Wang, G. J., Liu, H., Feng, L., Jiang, L., and Zhu, D. B., Journal of the American Chemical Society, vol. 125, pp. 1499614997, 2003.
16 Lau, K. K. S., Bico, J., Teo, K. B. K., Chhowalla, M., Amaratunga, G. A. J., Milne, W. I., McKinley, G. H., and Gleason, K. K., Nano Letters, vol. 3, pp. 17011705, 2003.
17 Oner, D. and McCarthy, T. J., Langmuir, vol. 16, pp. 77777782, 2000.
18 Liu, H., Feng, L., Zhai, J., Jiang, L., and Zhu, D. B., Langmuir, vol. 20, pp. 56595661, 2004.
19 Love, J. C., Gates, B. D., Wolfe, D. B., Paul, K. E., and Whitesides, G. M., Nano Letters, vol. 2, pp. 891894, 2002.
20 Xiu, Y., Zhu, L., Hess, D. W., and Wong, C. P., Langmuir, vol. 22, pp. 96769681, 2006.
21 Ashurst, W. R., Yau, C., Carraro, C., Lee, C., Kluth, G. J., Howe, R. T., and Maboudian, R., Sensors and Actuators a-Physical, vol. 91, pp. 239248, 2001.
22 Mastrangelo, C. H. and Hsu, C. H., Journal of Microelectromechanical Systems, pp. 3343, 1993.
23 Mastrangelo, C. H. and Hsu, C. H., Journal of Microelectromechanical Systems, pp. 4455, 1993.
24 Kulkarni, S. A., Mirji, S. A., Mandale, A. B., and Vijayamohanan, K. P., Thin Solid Films, vol. 496, pp. 420425, 2006.
25 Lee, C. C. and Hsu, W., Journal of Vacuum Science & Technology B, vol. 21, pp. 15051510, 2003.
26 Cooper, E. R., Andrews, C. D., Wheatley, P. S., Webb, P. B., Wormald, P., and Morris, R. E., Nature (London, United Kingdom), vol. 430, pp. 10121016, 2004.
27 Cheng, Y. T., Rodak, D. E., Angelopoulos, A., and Gacek, T., Applied Physics Letters, vol. 87, pp. -, 2005.
28 Wier, K. A. and McCarthy, T. J., Abstracts of Papers, 230th ACS National Meeting, Washington, DC, United States, Aug. 28-Sept. 1, 2005, pp. COLL147, 2005.
29 Wier, K. A. and McCarthy, T. J., Langmuir, vol. 22, pp. 24332436, 2006.
30 Adamson, A. W. G., Alice, P., Physical chemistry of surfaces, 6th Translator: Gast, Alice P. ISBN: 0471148733 (alk. paper) Reprint Edition: 6th, 1997.

Keywords

Sol-Gel Process Derived Superhydrophobic Silica Thin Films for Antistiction of MEMS Devices

  • ChingPing Wong (a1), Lingbo Zhu (a2), Dennis W Hess (a3) and C. P. Wong (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed