Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T10:18:19.698Z Has data issue: false hasContentIssue false

Small-Angle Neutron Scattering from Device-Quality a-Si:H and a-Si:D Prepared by PECVD and HWCVD

Published online by Cambridge University Press:  17 March 2011

D.L. Williamson
Affiliation:
Department of Physics, Colorado School of Mines, Golden, CO 80401, U.S.A
D.W.M. Marr
Affiliation:
Department of Chemical Engineering and Petroleum Refining, Colorado School of Mines, Golden, CO 80401, U.S.A
B.P. Nelson
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, U.S.A
E. Iwaniczko
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, U.S.A
J. Yang
Affiliation:
United Solar Systems Corp., 1100 West Maple Road, Troy, MI 48084, U.S.A
B. Yan
Affiliation:
United Solar Systems Corp., 1100 West Maple Road, Troy, MI 48084, U.S.A
S. Guha
Affiliation:
United Solar Systems Corp., 1100 West Maple Road, Troy, MI 48084, U.S.A
Get access

Abstract

The heterogeneity of a-Si:H and a-Si:D films has been probed on the nano-scale by small-angle neutron scattering (SANS). Films were deposited by two techniques, plasma-enhanced chemical-vapor deposition (PECVD) and hot-wire chemical-vapor deposition (HWCVD) using conditions that yield high-quality films and devices. Four samples were examined in a light-soaked state (AM1.5, 300 h) and then re-examined after annealing (190°C, 1 h) in-situ to look for any change in SANS associated with the Staebler-Wronski effect. No changes were observed in the SANS intensity to a precision that could have readily detected the 25% change reported in 1985 (Chenevas-Paule et al). Significant differences are observed in hydrogenated and deuterated films, as well as in the PECVD versus the HWCVD materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Williamson, D.L., Mater. Res. Soc. Symp. Proc. 377, 251 (1995) and therein.Google Scholar
2. Guha, S., Yang, J., Jones, S.J., Chen, Yan, and Williamson, D.L., Appl. Phys. Lett. 61, 1444 (1992).Google Scholar
3. Guha, S., Yang, J., Williamson, D.L., Lubianiker, Y., Cohen, J.D., and Mahan, A.H., Appl. Phys. Lett. 74, 1860 (1999).Google Scholar
4. Williamson, D.L., Mater. Res. Soc. Symp. Proc. 557, 251 (1999) and therein.Google Scholar
5. Leadbetter, A.J., Rashid, A.A.M., Richardson, R.M., Wright, A.F., and Knights, J.C., Solid State Commun. 33, 973 (1980).Google Scholar
6. Postol, T.A., Falco, C.M., Kampwirth, R.T., Schuller, I.K., and Yelon, W.B., Phys. Rev. Lett. 45, 648 (1980).Google Scholar
7. Leadbetter, A.J., Rashid, A.A.M., Colenutt, N., Wright, A.F., and Knights, J.C., Solid State Commun. 38, 957 (1981).Google Scholar
8. Bellissent, R., Chenevas-Paule, A., and Roth, M., J. Non-Cryst. Solids 59&60, 229 (1983); Physica B 117&118, 941 (1983).Google Scholar
9. Chenevas-Paule, A., Bellissent, R., Roth, M., and Pankove, J.I., J. Non-Cryst. Solids 77&78, 373 (1985).Google Scholar
10. Guy, C.A., Wright, A.F., Sinclair, R.N., Stewart, R.J., and Jansen, F., J. Non-Cryst. Solids 196, 260 (1996).Google Scholar
11. Russel, T.P., Lambooy, P., Barker, J.C., Gallagher, P., Satija, S.K., Kellogg, G.J., and Mayes, A.M., Macromolecules 28, 787 (1995).Google Scholar
12. Ho, D.L., Briber, R.M., Jones, R.L., Kumar, S.K., and Russel, T.P., Macromolecules 31, 9247 (1998).Google Scholar
13. Feigin, L.A. and Svergun, D.I., Structure Analysis by Small-Angle X-ray and Neutron Scattering (Plenum, New York, 1987).Google Scholar
14. Marr, D.W.M., Wartenberg, M., Schwatz, K.B., Agamalian, M.M., and Wignall, G.D., Macromolecules 30, 2120 (1997).Google Scholar
15. Menelle, A., J. Non-Cryst. Solids 97&98, 337 (1987).Google Scholar
16. Bellissent, R., in Amorphous Silicon and Related Materials, ed. Fritzche, H. (World Scientific, 1988) p.93.Google Scholar
17. Yang, J., Banerjee, A., and Guha, S., Appl. Phys. Lett. 70, 2975 (1997).Google Scholar
18. Wang, Q., Iwaniczko, E., Xu, Y., Nelson, B.P., and Mahan, A.H., Mater. Res. Soc. Symp. Proc. 557, 163 (1999).Google Scholar
19. Glinka, C.J., Barker, J.G., Hammouda, B., Krueger, S., Moyer, J.J., and Orts, W.J., J. Appl. Cryst. 31, 430 (1998).Google Scholar
20. Nelson, B.P., Xu, Y., Mahan, A.H., Williamson, D.L., and Crandall, R.S., Mater. Res. Soc. Symp. Proc. (this volume).Google Scholar
21. Fritzsche, H., Mater. Res. Soc. Symp. Proc. 467, 19 (1997), and therein.Google Scholar