Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T00:30:15.267Z Has data issue: false hasContentIssue false

Size-effect Stabilization of the Low-T Ferroelectric Phase in Nanocrystalline WO3

Published online by Cambridge University Press:  21 February 2011

Xiang-Xin Bi
Affiliation:
Center for Applied Energy Research, University of Kentucky, Lexington, KY40511-8433, USA
W. T. Lee
Affiliation:
Center for Applied Energy Research, University of Kentucky, Lexington, KY40511-8433, USA
Kai-An Wang
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, KY40511-8433, USA
D. F. Collins
Affiliation:
Department of Physics, Warren Wilson College, Asheville, NC 28815, USA
S. Bandow
Affiliation:
Instrument Center, Institute for Molecular Science, Myodaiji, Okazaki, 444, Japan
P. C. Eklund
Affiliation:
Center for Applied Energy Research, University of Kentucky, Lexington, KY40511-8433, USA Department of Physics and Astronomy, University of Kentucky, Lexington, KY40511-8433, USA
Get access

Abstract

Using a CO2 laser to drive the pyrolysis of W(CO)6 and O2, we have synthesized nanocrystalline WO3-x particles. These nanopowders are found to exhibit a narrow size distribution with an average particle size produced in the range 5 to 10 nm, depending on the experimental conditions. Typical production rates are ∼ 2 g/h. Results from a Raman scattering study on WO3 nanopowder samples annealed in O2 indicate that a smaller particle size appears to stabilize the low-T ferroelectric phase ( < -40 °C) at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Haggerty, J. S., Sinterable Powders from Laser-Driven Reactions, in Laser-induced Chemical Processes, Steinfeld, J.I., Editor, 1981, Plenum Press: New York.Google Scholar
2. Andres, R. P., Averback, R. S., Brown, W. L., Goddard, I. W. A., Kaldor, A., Louie, S. G., Moscovits, M., SPeercy, P., Riley, S. J., Siegel, R. W., Spaepen, F., and Wang, Y., J. Mater. Res., 4: p. 704, 1989.Google Scholar
3. Buerki, P. R., TroxIer, T., and Leutwyler, S., Synthesis of Ultrafine Si3N4 Particles by CO2. laser Induced Gas Phase Reactions in High Temperature Science, Vol. 27. 1990, Humana Press Inc. 323.Google Scholar
4. Curcio, F., Ghiglione, G., Musci, M., and Nannetti, C., Applied Surface Science, 36: p. 5258, 1989.Google Scholar
5. Rice, G. W. and Woodin, R. L., J. Am. Ceram. Soc., 71: p. C181, 1988.CrossRefGoogle Scholar
6. Curcio, F., Musci, M., and Notaro, N., Applied Surface Science, 46: p. 225229, 1990.Google Scholar
7. Fiato, R. A., Rice, G. W., Miseo, S., and Soled, S. L., United States Patent, 4,637,753, 1987.Google Scholar
8. Rice, G. W., Fiato, R. A., and Soled, S. L., United States Patent, 4,659,681, 1987.Google Scholar
9. Bi, Xiang-Xin, Ganguly, B., Huffman, G. P., Huggins, F. E., M. Endo and Eklund, P. C., Journal of Materials Research, Vol. 8(7), 1666(1993).CrossRefGoogle Scholar
10. Bi, Xiang-Xin, Lee, W. T., Bandow, S., Davis, B. and Eklund, P. C., to be published, 1993.Google Scholar
11. Bi, Xiang-Xin and Eklund, P. C., Proc. of Mater. Res. Society Meeting, Boston, Mass., Dec. 2 - 6, 1992.Google Scholar
12. Bi, Xiang-Xin, Wang, Y., Lee, W. T., Wang, K.-A., Bandow, S., and Eklund, P. C., Proceedings of Material Research Society, in press, 1993.Google Scholar
13. Deb, S. K., Phil. Mag., 27: p. 801, 1973.Google Scholar
14. Deb, S. K., Solar Energy Mater., 25: p. 327, 1992.Google Scholar
15. Dautremont-Smith, W. C., Displays, 4: p. 3, 1982.CrossRefGoogle Scholar
16. Zhang, J.-G., Benson, D. K., Tracy, C. E., and Deb, S. K., J. Mat. Res., 8: p. 2649, 1993.Google Scholar
17. Anderson, A., Spectroscopy Letters, 9(11): p. 809819, 1976.Google Scholar
18. Gehlig, R. and Salje, E., Phil. Mag. B, 47(3): p. 229245, 1983.Google Scholar
19. Bihan, R. L. and Vacherand, C., J. Phys. Soc. Japan, 26, Suppl.: p. 158161, 1970.Google Scholar
20. Hayashi, S., Sugano, H., Arai, H., and Yamamoto, K., J. Phys. Soc. Jpn., 61(3): p. 916923, 1992.Google Scholar
21. Shimomura, T., Furuta, T., and Maki, T., Jpn. J. Appl. Phys., 26: p. L299, 1987.CrossRefGoogle Scholar
22. Mendelsohn, D. H. and Goldner, R. B., J. Electrochem. Soc., 131: p. 857, 1984.CrossRefGoogle Scholar
23. Delichere, P., Falaras, P., Froment, M., Goff, A. H.-L., and Agius, B., Thin Solid Films, 161: p. 35, 1988.Google Scholar
24. Takase, A. and Miyakawa, K., Jpn. J. Appl. Phys., 30(8B): p. L1508– L1511, 1991.Google Scholar
25. Kaneko, H. and Miyake, K., J. Appl. Phys., 66: p. 845, 1989.CrossRefGoogle Scholar
26. Siegel, R. W., Processing of Matals and Alloys of “Materials Science and Technology - A comprehensive Treatment”, (VCH Verlagsgesellschaft, Weinheim), 1991.Google Scholar
27. Ishikawa, K., Yoshikawa, K., and Okada, N., Phys. Rev. B, 37: p. 5852, 1988.Google Scholar
28. Arai, M., Hayashi, S., Yamamoto, K., and Kim, S. S., Solid State Commun., 75: p. 613, 1990.Google Scholar
29. Cullity, B. D., Elements of X-Ray Diffraction. 1967, Addison-Wesley Publishing Company, Inc. Google Scholar
30. Bi, Xiang-Xin, Jagtoyen, M., Derbyshire, F. J., Eklund, P. C., Endo, M., Chowdhury, D., and Dresselhaus, M. S., to be published, 1993.Google Scholar
31. Bi, Xiang-Xin, Lee, W. T., and Eklund, P. C., in preparation, 1993.Google Scholar
32. Daniel, M. F., Desbat, B., Lassegues, J. C., Gerand, B., and Figlarz, M., Journal of Solid State Chemistry, 67: p. 235247, 1987.Google Scholar
33. Salje, E., Acta Cryst., A31: p. 360, 1975.Google Scholar