Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T08:55:27.595Z Has data issue: false hasContentIssue false

Sintering Kinetics of an Yttrium Aluminosilicate Glass

Published online by Cambridge University Press:  23 March 2012

Miguel O. Prado*
Affiliation:
Dep. Materiales Nucleares, Centro Atómico Bariloche, Comisión Nac. de Energía Atómica. Consejo Nacional de Investigaciones Científicas y Técnicas. Av. Ezequiel Bustillo, km 9.5, (8400) San Carlos de Bariloche, Río Negro, Argentina
Diana Lago
Affiliation:
Dep. Materiales Nucleares, Centro Atómico Bariloche, Comisión Nac. de Energía Atómica. Consejo Nacional de Investigaciones Científicas y Técnicas. Av. Ezequiel Bustillo, km 9.5, (8400) San Carlos de Bariloche, Río Negro, Argentina
Diego S. Rodriguez
Affiliation:
Dep. Materiales Nucleares, Centro Atómico Bariloche, Comisión Nac. de Energía Atómica.
Get access

Abstract

Yttrium aluminosilicate (YAS) glasses have been proposed as host matrices for the immobilization of radioactive elements. In addition, yttrium has been used to simulate actinides [1]. It is well known that these glasses are resistant to water corrosion and exhibit high Tg and good mechanical properties [2]. As shown in [3], on heating, yttrium disilicate and mullite / sillimanite crystals grow from the pre-existing nucleation sites on the surface, until each glass particle volume is fully crystallized (volume-homogeneous nucleation was not observed), decreasing the glassy surface available for sintering by viscous flow. Sintering takes place simultaneously, by viscous flow but competes with surface crystallization; thus, if thermal treatment is not carefully designed a vitroceramic is obtained. In this paper we study the isothermal sintering kinetics of a YAS glass-powder-size distribution and non-isothermal sintering kinetics at 1, 3, 5, 10 and 15 K/min of two YAS glass-powder-size distributions. From the experimental evidence obtained, and crystallization data from [3], we design a sintering procedure in order to achieve a high-density glass monolith with submicrometric crystalline phases.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sadiki, N., Coutures, J. P., Fillet, C., Dussossoy, J. L., J. Nuc. Mater. 348 (2006) 7078.10.1016/j.jnucmat.2005.09.003Google Scholar
2. Arita, I., Wilkinson, D., Purdy, G., J. American Ceramic Society 75 (12), (1992) 1520.10.1111/j.1151-2916.1992.tb04427.xGoogle Scholar
3. Lago, D., Garces, D., Prado, M. O., Mrs 2011-XXXV International Symposium on Scientific Basis for Nuclear Waste Management - Buenos Aires, Argentina, October 27, 2011.Google Scholar
4. Prado, M. O., Zanotto, E. D., Müller, R., J Non-Cryst Solids 279: (2-3), (2001) 169178.10.1016/S0022-3093(00)00399-9Google Scholar
5. Prado, M. O., Zanotto, E. D., Fredericci, C., J. Materials Research, 18 (6), (2003) 13471354.10.1557/JMR.2003.0185Google Scholar
6. Zanotto, E. D., Prado, M. O., Phys. Chem. Glasses 42: (3) (2001) 191198.Google Scholar
7. Prado, M. O., Fredericci, C., Zanotto, E. D., J. Non Cryst. Sol., 331/1-3, (2003) 145156.10.1016/j.jnoncrysol.2003.08.076Google Scholar
8. Prado, M. O., Fredericci, C., Zanotto, E. D., Chem. and Phys. of Glasses, 43 (5),(2002) 215223 .Google Scholar
9. Prado, M. O., Fredericci, C., Zanotto, E. D., J. Non Cryst. Sol., 331/1-3 (2003) 157167.10.1016/j.jnoncrysol.2003.08.077Google Scholar
10. Prado, M. O., Zanotto, E. D., Comptes Rendus Chimie 5 (11): 773786 NOV 2002.10.1016/S1631-0748(02)01447-9Google Scholar