Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T05:20:54.986Z Has data issue: false hasContentIssue false

Single-state electronic structure measurements using time-resolved x-ray laser induced photoelectron spectroscopy

Published online by Cambridge University Press:  01 February 2011

A. J. Nelson
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551
J. Dunn
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551
T. van Buuren
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551
J. Hunter
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551
Get access

Abstract

We demonstrate single-shot x-ray laser induced time-of-flight photoelectron spectroscopy on semiconductor and metal surfaces with picosecond time resolution. The LLNL COMET compact tabletop x-ray laser source provides the necessary high photon flux (>1012/pulse), monochromaticity, picosecond pulse duration, and coherence for probing ultrafast changes in the chemical and electronic structure of these materials. Static valence band and shallow core-level photoemission spectra are presented for ambient temperature Ge(100) and polycrystalline Cu foils. Surface contamination was removed by UV ozone cleaning prior to analysis. In addition, the ultrafast nature of this technique lends itself to true single-state measurements of shocked and heated materials. Time-resolved electron time-of-flight photoemission results for ultra-thin Cu will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bachrach, R.Z., Brown, F.C. and Hagström, S.B.M., J. Vac. Sci. Technol. 12(1), 309 (1975).Google Scholar
2. Kondo, H., Tomie, T. and Shimizu, H., Appl. Phys. Lett. 69(2), 182 (1996).Google Scholar
3. Kondo, H., Tomie, T. and Shimizu, H., Appl. Phys. Lett. 72(21), 2688 (1998).Google Scholar
4. Rettenberger, A. and Haight, R., Phys. Rev. Lett. 76, 1912 (1996).Google Scholar
5. Bauer, M., Lei, C., Read, K., Tobey, R., Gland, J., Murnane, M. M., and Kapteyn, H. C., Phys. Rev. Lett. 87(2), 025501–1 (2001).Google Scholar
6. Tsilimis, G., Benesch, C., Kutzner, J., and Zacharias, H., J. Opt. Soc. Am. B20(1), 246 (2003).Google Scholar
7. Nelson, A.J., Dunn, J., van Buuren, T., Hunter, J., Smith, R.F., Hemmers, O., and Lindle, D.W., Soft X-Ray Lasers and Applications V, ed. Fill, E.E. et al, SPIE Proceedings 5197, 168 (2003).Google Scholar
8. Dunn, J., Smith, R.F., Nilsen, J., Nelson, A.J., Van Buuren, T., Moon, S.J., Hunter, J.R., Filevich, J., Rocca, J.J., Marconi, M.C., Shlyaptsev, V.N., X-Ray Lasers 2002: 8th International Conference on X-ray Lasers, ed. Rocca, J.J. et al, AIP Conference Proceedings No. 641, 481 (2002).Google Scholar
9. Dunn, J., Li, Y., Osterheld, A. L., Nilsen, J., Hunter, J. R., and Shlyaptsev, V. N., Phys. Rev. Lett. 84, 4834 (2000).Google Scholar
10. Smith, R.F., Dunn, J., Hunter, J. R., Nilsen, J., Hubert, S., Jacquemot, S., Remond, C., Marmoret, R., Fajardo, M., Zeitoun, P., Vanbostal, L., Lewis, C. L.S., Francoise Ravet, M., Delmotte, F., Opt. Lett. 28(22), 2261 (2003).Google Scholar
11. Dunn, J. et al., Soft x-ray lasers and Applications V, SPIE Int. Soc. Opt. Eng. Proc, vol. 5197, ed. Fill, E.E. and Suckewer, S., 5159 (2003).Google Scholar
12. Hemmers, O., Whitfield, S.B., Glans, P., Wang, H., Lindle, D.W., Wehlitz, R., and Sellin, I.A., Rev. Sci. Instrum. 69, 3809 (1998).Google Scholar
13. Yeh, J.-J. and Lindau, I., “Atomic Subshell Photoionization Cross Sections and Asymmetry Parameters: 1 ≤ Z ≤ 103”, Atomic Data and Nuclear Data Tables 32, 11 (1985).Google Scholar
14. Smith, N., Phys. Rev. B3, 1862 (1971).Google Scholar
15. Stöhr, J., McFeely, F.R., Apai, G., Wehner, P.S. and Shirley, D.A., Phys. Rev. B14, 4431 (1976).Google Scholar
16. Goldoni, A., Santoni, A., Sancrotti, M., Dhanak, V.R. and Modesti, S., Surf. Sci. 382, 336 (1997).Google Scholar