Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T18:27:52.066Z Has data issue: false hasContentIssue false

Single Crystal TaN Thin Films on TiN/Si Heterostructure

Published online by Cambridge University Press:  01 February 2011

H. Wang
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7916
Ashutosh Tiwari
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7916
X. Zhang
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7916
A. Kvit
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7916
J. Narayan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7916
Get access

Abstract

We have successfully grown epitaxial cubic (B1-NaCl structure) tantalum nitride films on Si (100) and (111) substrate using a pulsed laser deposition technique. A thin layer of titanium nitride was used as a buffer medium. We characterized these films using X-ray diffraction, high resolution transmission electron microscopy and scanning transmission electron microscopy (Zcontrast). X-ray diffraction and high-resolution transmission electron microscopy confirmed the single crystalline nature of these films with cubic-on-cubic epitaxy. The epitaxial relations follow TaN(100)//TiN(100)//Si(100) on Si(100) and TaN(111)//TiN(111)//Si(111) on Si(111). We observed sharp interfaces of TaN/TiN and TiN/Si without any indication of interfacial reaction. Rutherford backscattering experiments showed these films to be slightly nitrogen deficient (TaN0.95). High precision electrical resistivity measurements showed excellent metallic nature of these films. We also tried to deposit TaN directly on silicon, the films were found to be polycrystalline. In our method, TiN plays a key role in facilitating the epitaxial growth of TaN. This method exploits the concept of lattice matching epitaxy between TaN and TiN and domain matching epitaxy between TiN and Si. We studied the diffusion barrier properties of these films by growing a thin layer of copper on the top and subsequently annealing the films at 500°C and 600°C in vacuum. Cu diffusion layer was about 2nm after 600°C annealing for 30min. This work explores a promising way to grow high quality TaN diffusion barrier on silicon for copper interconnection.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Moslehi, M. M. Lino, A. P. and Omsted, T., J. Vac. Sci. Technol. A 17, 1893 (1999).Google Scholar
2. Murarka, P., Mater. Sci. Eng., R 19, 87 (1997).Google Scholar
3. Holloway, K., Fryer, P. M. Cabral, C. Jr, Harper, J. M. E., Bailey, P. J. and Kelleher, K. H. J. Appl. Phys., 71, 5433(1992).Google Scholar
4. Olowolafe, J. O. Li, J., and Mayer, J. W. Appl. Phys. Lett. 58, 469(1991).Google Scholar
5. Bicker, M., Pinnow, C. U., Geger, U. and Schneider, S., Appl. Phys. Lett., 78, 3618(2001).Google Scholar
6. Oku, T., Kawakami, E., Uekubo, M., Takahiro, K., Yamaguchi, S., Murakami, M., Appl. Surf. Sci. 99, 265(1996).Google Scholar
7. Tsai, M. H. Sun, S. C. Lee, C. P. Chiu, H. T. Tsai, C. E. Chuang, S. H. and Wu, S. C. Thin Solid Films, 270, 531(1995).Google Scholar
8. Mori, H., Imahori, J., Oku, T. and Murakami, M., AIP-Conference-Proceedings, 418, 475(1998)Google Scholar
9. Stavrev, M., Wenzel, C., Moller, A. and Drescher, K., Appl. Sur. Sci., 91, 257(1995).Google Scholar
10. Lee, Y. K. khin, L. M. Kim, J., and Kangsoo, L., Mater. Sci. in Semiconductor Proc. 3, 179(2000).Google Scholar
11. Gerstenberg, D., and Calbick, C. J. J. Appl. Phys. 35, 402(1964).Google Scholar
12. Terao, N., Jpn. J. Appl. Phys. 10, 248(1971).Google Scholar
13. Shin, C. S., Gall, D., Desjardins, P., Vailionis, A., Kim, H., Petrov, I., and Greene, J. E. Appl. Phys. Lett. 75, 3808(1999).Google Scholar
14. Narayan, J., Tiwari, P., Chen, X., Singh, J., Chowdhury, R. and Zheleva, T., Appl. Phys. Lett. 61, 1290(1992). (J Narayan, U.S. Patent#5, 406,123, April 11,1995)Google Scholar