Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T05:14:22.959Z Has data issue: false hasContentIssue false

Single Crystal Processing of Intermetallics for Structural Applications

Published online by Cambridge University Press:  01 January 1992

Edward H. Goldman*
Affiliation:
GE Aircraft Engines, Cincinnati, OH 45215
Get access

Abstract

A number of techniques are available for making metals, non-metals, and intermetallic materials into high-purity single crystals. The most common of these for producing large crystals involve solidification from the melt. The high melting temperatures of most intermetallics of interest for structural applications result in the expected problems of achieving the required high temperatures and temperature gradients while containing the molten material in a chemically, thermally and mechanically stable environment. Processes which have produced intermetallic single crystals, and the materials which have been crystallized, are reviewed. The largest known single crystals of a high temperature intermetallic have been produced in alloys based on NiAl using a modified Bridgman-type directional solidification process, an evolution of the process commonly used to create large jet engine turbine airfoils in Ni-base superalloys. Issues related to processing are described, and the resultant solidification structures are compared with those typical of superalloys. Finally, the prospects for the various processes, and the advances required to push them toward more practical applications, are addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gilman, J.J., editor, The Art and Science of Growing Crystals (John Wiley & Sons, Inc., New York, 1963).Google Scholar
2. Bunshah, R.F., editor, Techniques of Metals Research. Vol 1. Part 2 (Interscience Publishers, New York, 1968).Google Scholar
3. Sen, S. and Stefanescu, D.M., JOM 43 (5), 3034 (1991).Google Scholar
4. Darolia, R., Lahrman, D.F., Field, R.D., Dobbs, J.R., Chang, K.M., Goldman, E.H., Konitzer, D.G., in Ordered Intermetallics — Physical Metallurgy and Mechanical Behaviour, edited by Liu, C.T., et al (Kluwer Academic Publishers, Netherlands, 1992), p. 679.Google Scholar
5. Czochralski, J., Z. Phys. Chem. 92, 219 (1916).Google Scholar
6. Corderman, R., Goldman, E.H., Chartier, C., unpublished research, 1990.Google Scholar
7. Bewlay, B.P. (private communication).Google Scholar
8. Gottlieb, U., Laborde, O., Thomas, O., Rouault, A., Senateur, J.R and Madar, R., Appl. Surf. Sci. 53, 247 (1991).Google Scholar
9. Chang, K.M., Bewlay, B.P., Sutliffe, J.A., Jackson, M.R., JOM 44 (6), 5963 (1992).Google Scholar
10. Thomas, O., Senateur, J.P., Madar, R., Laboide, O., Rosencher, E., Solid State Commun. 55, 629 (1985).Google Scholar
11. Jewett, D.N., US Patent No. 4, 659, 421 (1987).Google Scholar
12. LaBelle, H. E. Jr., J. Crystal Growth 50 (1980).Google Scholar
13. Bridgman, P.W., Proc. Am. Acad. Arts and Sciences 60 (6), 305 (1925).Google Scholar
14. Obreimov, I. and Schubnikow, L., Z. Phys. 25, 31 (1924).Google Scholar
15. Schneibel, J.H. and Hazzledine, P.M. in High-Temperature Ordered Intermetallic Allovs IV. edited by Johnson, L.A., et al (Mater. Res. Soc. Proc. 213, Boston, MA, 1990) p.323.Google Scholar
16. Wu, Z.L., Pope, D.P., Vitek, V., High-Temperature Ordered Intermetallic Allovs IV. edited by Johnson, L.A., et al (Mater. Res. Soc. Proc. 213, Boston, MA, 1990), p.487.Google Scholar
17. Inoue, H.R.P., Wayman, C.M., Saburi, T., High-Temperature Ordered Intermetallic Allovs IV. edited by Johnson, L.A., et al (Mater. Res. Soc. Proc. 213, Boston, MA, 1990), p.521.Google Scholar
18. Miura, S., Hayashi, T., Takekawa, M., Mishima, Y., Suzuki, T., High-Temperature Ordered Intermetallic Allovs IV. edited by Johnson, L.A., et al (Mater. Res. Soc. Proc. 213, Boston, MA, 1990) p.623.Google Scholar
19. Chang, K.-M., Darolia, R., Lipsitt, H.A., High-Temperature Ordered Intermetallic Allovs IV. edited by Johnson, L.A., et al (Mater. Res. Soc. Proc. 213, Boston, MA, 1990), p.597.Google Scholar
20. Keck, PH., Golay, M.J.E., Phys. Rev. 89, 1297 (1953).Google Scholar
21. Fat-Halla, N., Bahi, S., Kawabata, T., Izumi, O., Mat. Sci, & Eng. 61, 227 (1983).Google Scholar
22. George, E.P., Porter, W.D., Henson, H.M., Oliver, W.C., Oliver, B.F., J. Mater Res. 4, 78 (1989).Google Scholar
23. Hirano, T., Chung, S.-S., Mishima, Y., Suzuki, T., in High-Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L.A., et al (Mater. Res. Soc. Proc. 213, Boston, MA, 1990) p. 635.Google Scholar
24. Savitskii, E.M., Burkhanov, G.S., Zalivin, I.M., Problem Prochnosti 11, 111 (1972).Google Scholar
25. Chang, S. and Pope, D.P. (private communication).Google Scholar
26. Inui, H., Nakamura, A., Yamaguchi, M., in High-Temperature Ordered Intermetallic Alloys IV. edited by Johnson, L.A., Pope, D.P. and Stiegler, J.O. (Mater. Res. Soc. Proc. 213, Boston, MA, 1990) p. 569.Google Scholar
27. Lograsso, T.A., Mat. Sci & Eng. A155, 115 (1992).Google Scholar
28. Oliver, B.F., Trans. AIME 1, 960 (1963).Google Scholar
29. Reviere, R.D., Oliver, B.F., Bruns, D.D., Mat. & Manuf. Proc. 4 (1), 103 (1989).Google Scholar
30. Lograsso, T.A., Schmidt, F.A., J. Crystal Growth 110, 363 (1991).Google Scholar
31. Verneuil, A., Compt. Rend. 135, 791 (1902).Google Scholar
32.Manufacturing Technology for Advanced Propulsion Materials, Final Report, F33615-85-C-5152 (1987).Google Scholar
33. Walter, J.L., Cline, H.E., Met. Trans. 4, 33 (1973).Google Scholar
34. Yu, K.O., Oti, J.A. and Walston, W. S., in High-Temperature Ordered Intermetallic Alloys V. (Mater. Res. Soc. Proc., Boston, MA, 1992), to be published.Google Scholar
35. Field, R.D., Darolia, R., Lahrman, D.F., Scripta Met. 23, 1469 (1989).Google Scholar
36. Aimone, P.R., Kilinski, B. and London, B., in Processing and Fabrication of Advanced Materials for High Temperature Applications. (TMS-AIME Proc., Chicago, IL, 1992), to be published.Google Scholar