Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T15:41:06.899Z Has data issue: false hasContentIssue false

Simulation of Hydrogenated Amorphous Silicon Germanium Alloys for Bandgap Grading

Published online by Cambridge University Press:  15 February 2011

E. Schroten
Affiliation:
Delft University of Technology, Laboratory of Electronic Components, Technology and Materials – DIMES, P. O. Box 5053, NL-2600 GB Delft, the Netherlands
M. Zeman
Affiliation:
Delft University of Technology, Laboratory of Electronic Components, Technology and Materials – DIMES, P. O. Box 5053, NL-2600 GB Delft, the Netherlands
R. A. C. M. M. van Swaaij
Affiliation:
Delft University of Technology, Laboratory of Electronic Components, Technology and Materials – DIMES, P. O. Box 5053, NL-2600 GB Delft, the Netherlands
L. L. A. Vosteen
Affiliation:
Delft University of Technology, Laboratory of Electronic Components, Technology and Materials – DIMES, P. O. Box 5053, NL-2600 GB Delft, the Netherlands
J. W. Metselaar
Affiliation:
Delft University of Technology, Laboratory of Electronic Components, Technology and Materials – DIMES, P. O. Box 5053, NL-2600 GB Delft, the Netherlands
Get access

Abstract

Computer simulations are reported of hydrogenated amorphous silicon germanium (a-SiGe:H) layers that make up the graded part of the intrinsic layer near the interfaces of a-SiGe:H solar cells. Therefore the graded part is approached with a ‘staircase’ bandgap profile, consisting of three layers within which the material properties are constant. Calibrated model parameters are obtained by matching simulation results of material properties of intrinsic a-SiGe:H single layers to measurements. Using the obtained model parameter sets subsequent simulations of p-i-n devices with intrinsic material similar to the single layers are matched to measured current-voltage characteristics. The changes in parameter values are evaluated as a function of optical gap.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Guha, S., Payson, J. S., Agarwal, S. C., and Ovshinsky, S. R., J. Non-Cryst. Solids 97 & 98, p. 1455 (1987).Google Scholar
2. Stutzman, M., Street, R. A., Tsai, C. C., Boyce, J. B., and Ready, S. E., J. Appl. Phys. 66, p. 569 (1989).Google Scholar
3. Bauer, G. H., Sol. State Phen. 44, p. 365 (1995).Google Scholar
4. Bennet, M. S., Catalano, A., Rajan, K., and Arya, R.R., in Proc. 21th PVSC (IEEE, New York, 1990), p. 1653.Google Scholar
5. Guha, S., Yang, J., Pawlikiewicz, A., Glatfelter, T., Ross, R., and Ovshinsky, S. R., Appl. Phys. Lett. 54, p. 2330 (1989).Google Scholar
6. Vasanth, K., Payne, A., Crone, B., Sherman, S., Jakubowski, M., and Wagner, S., in Amorphous Silicon Technology, edited by Hack, M., Schiff, E. A., Madan, A., Powell, M., and Matsuda, A. (Mater. Res. Soc. Proc. 377, Pittsburgh, PA 1995), p. 663.Google Scholar
7. Zimmer, J., Stiebig, H., Fölsch, J., Finger, F., and Wagner, H., in Proc. 14th EPVSECC, Barcelona, edited by Ossenbrink, H. A., Helm, P., and Ehmann, H. (Bedford, UK, 1997), p. 593.Google Scholar
8. Wronski, C.R., Lu, Z., Jiao, L., and Lee, Y., in Proc. 26th PVSC (IEEE, New York, 1997), p. 587.Google Scholar
9. Zeman, M., Swaaij, R. A. C. M. M. van, Schroten, E., Vosteen, L. L. A., and Metselaar, J. W.. in Amorphous Silicon Technology, edited by Branz, H., Hack, M., Schropp, R., Shimizu, I., and Wagner, S. (Mater. Res. Soc. Proc. 507, Pittsburgh, PA 1998), p. 409.Google Scholar
10. Graeff, C. F. O., Stutzmann, M., and Eberhardt, K., Phil. Mag. B 69, p. 387 (1994). We used the absorption coefficient at a photon energy of 0.5 eV below the E3.5 gap and multiplied this by 2 × 1016 cm-2 for a-Si:H, and towards 1.3 × 1016 cm-2, which is valid for a-Ge:H.Google Scholar
11. Zeman, M., Willemen, J.A., Vosteen, L.L.A., Tao, G., and Metselaar, J.W., Solar Energy Mat. and Solar Cells 46, p. 81 (1997).Google Scholar
12. Nebel, C. E., Ph.D. Thesis University of Stuttgart, 1990.Google Scholar