Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-11T09:37:21.588Z Has data issue: false hasContentIssue false

Similarities and Differences in the Mechanisms of High and Low Energy Ion Mixing

Published online by Cambridge University Press:  26 February 2011

Yang-Tse Cheng
Affiliation:
General Motors Research Laboratories, Warren, Michigan 48090-9055
Steven J. Simko
Affiliation:
General Motors Research Laboratories, Warren, Michigan 48090-9055
Maria C. Militello
Affiliation:
General Motors Research Laboratories, Warren, Michigan 48090-9055
Audrey A. Dow
Affiliation:
General Motors Research Laboratories, Warren, Michigan 48090-9055
Gregory W. Auner
Affiliation:
Wayne State University, Detroit, Michigan 48202.
M. H. Alkaisi
Affiliation:
Wayne State University, Detroit, Michigan 48202.
K. R. Padmanabhan
Affiliation:
Wayne State University, Detroit, Michigan 48202.
Get access

Abstract

High energy ion mixing occurs when an ion beam of a few hundred keV bombards an interface under the surface. Low energy ion mixing arises when an ion beam of a few keV bombards an interface near the surface during, for example, sputter depth profiling and low energy ion assisted deposition. At low temperatures, the rate of both high and low energy ion mixing can be influenced by thermodynamic parameters, such as the heat of mixing and the cohesive energy of solids. These effects are demonstrated by ion mixing experiments using metallic bilayers consisting of high atomic number elements. A model of diffusion in thermal spikes is used to explain this similarity. Low energy ion mixing can also be strongly affected by surface diffusion and the morphological stability of thin films. These effects are illustrated using results obtained from sputter depth profiling of Ag/Ni bilayers at elevated temperatures. High energy ion mixing at low temperatures can be influenced by the anisotropic momentum distribution in a collision cascade as seen from a set of marker experiments to determine the dominant moving species in high energy ion mixing. These similarities and differences between high and low energy ion mixing illustrate the diversity of ion-solid interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, D. H., Hart, R. R., Kiewit, D. A., and Marsh, O. J., Phys. Stat. Sol. (a) 15, 645, (1973).Google Scholar
2. Cullis, A. G., Borders, J. A., Hirvonen, J. K., Poate, J. M., Phil. Mag. B 37, 615 (1978).Google Scholar
3. Poate, J. M., J. Vac. Sci. Technol. 15, 1636 (1978).Google Scholar
4. Tsaur, B. Y. and Mayer, J. W., Phil. Mag. A 43, 345 (1981).Google Scholar
5. Liu, B. X., Ma, E., Li, J., and Huang, L. J., Nucl. Instrum. Methods B 19 /20, 682 (1987).Google Scholar
6. Lutz, H. and Sizmann, R., Phys. Lett. 5, 113 (1963).Google Scholar
7. Rossnagel, S. M. and Cuomo, J. J., MRS Bulletin, Feb./March, 40 (1987).Google Scholar
8. Mattox, D. M., J. Vac. Sci. Tech. A7, 1105 (1989).Google Scholar
9. Wolf, G. K., Barth, M., Eusinger, W., Nucl. Instrum. Methods B37 /38, 683 (1989).Google Scholar
10. Haff, P. K. and Switkowski, Z. E., J Appl. Phys. 48, 3383 (1977).Google Scholar
11. Matteson, S., Appl. Phys. Lett. 39, 288 (1981).Google Scholar
12. Sigmund, P. and Gras-Marti, A., Nucl. Instrum. Methods 168, 389 (1980).Google Scholar
13. Sigmund, P. and Gras-Marti, A., Nucl. Instrum. Methods 182 /183, 25 (1981).Google Scholar
14. Hofer, W. O. and Littmark, U., Phys. Lett. 71A, 457 (1979).Google Scholar
15. Littmark, U. and Hofer, W. O., Nucl. Instrum. and Methods 168, 329 (1980).Google Scholar
16. Roosendaal, H. E. and Sanders, J. B., Nucl. Instrum. Methods 218, 673 (1983).Google Scholar
17. Sanders, J. B., Westendorp, J. F. M., Vredenberg, A. M., and Saris, F. W., Nucl. Instrum. Methods B19 /20, 659 (1987).Google Scholar
18. Kelly, R. and Sander, J. B., Surf. Sci. 57, 143 (1976).Google Scholar
19. Winterbon, K. B., Sigmund, P., and Sanders, J. B., Mat. Fys. Medd. Dan. Vid. Selsk. 37, 1 (1970).Google Scholar
20. Wang, Z. L., Westendrop, J. F. M., and Saris, F. W., Nucl. Instrum. Methods 209 /210, 115 (1983).Google Scholar
21. Van Rossum, M., Shreter, U., Johnson, W. L., and Nicolet, M.-A., Mat. Res. Soc. Symp. Proc. 27, 127 (1984).Google Scholar
22. Cheng, Y.-T., Mat. Sci. Reports 5, 45 (1990).Google Scholar
23. Cheng, Y.-T., Van Rossum, M., Nicolet, M-A., and Johnson, W. L., Appl. Phys. Lett. 45, 185 (1984).Google Scholar
24. Van Rossum, M., Cheng, Y.-T., Nicolet, M.-A., and Johnson, W. L., Appl. Phys. Lett. 46, 610 (1985).Google Scholar
25. Johnson, W. L., Cheng, Y.-T., Van Rossum, M., and Nicolet, M-A., Nucl. Instrum. Methods B 7 /8, 657 (1985).Google Scholar
26. Cheng, Y.-T., Workman, T. W., Nicolet, M-A., and Johnson, W. L., Mat. Res. Soc. Symp. Proc. Vol. 74, 419 (1987).Google Scholar
27. Traverse, A., Le Boite, M. G., Nevot, L., Pardo, B., and Corno, J., Appl. Phys. Lett. 51, 1901 (1987).Google Scholar
28. Akano, U. G., Thompson, D. A., Davies, J. A., and Smeltzer, W. W., J. Mater. Res. 3, 1057 (1988).Google Scholar
29. Sanders, J. B., Westendorp, J. F. M., Vredenberg, A. M., and Saris, F. W., Nucl. Instrum. Methods B19 /20, 659 (1987).Google Scholar
30. Cheng, Y.-T., Auner, G. W., Alkaisi, M. H., Padmanabhan, K. R., and Kar-markar, M. M., Nucl. Instrum. Methods (in press).Google Scholar
31. Auner, G. W., Cheng, Y.-T., Alkaisi, M. H., and Padmanabhan, K. R., Appl. Phys. Lett. 58, 586 (1991).Google Scholar
32. Cheng, Y.-T., Dow, A. A., and Clemens, B. M., Appl. Phys. Lett. 53, 1346 (1988).Google Scholar
33. Cheng, Y.-T., Dow, A. A., Clemens, B. M., and Cirlin, E.-H., J. Vac. Sci. Tech. A 7, 1641 (1989).Google Scholar
34. Cirlin, E.-H., Cheng, Y.-T., Ireland, P., and Clemens, B. M., Surface and Interface Analysis 15, 337 (1990).Google Scholar
35. King, B. V., Puranik, S. G., Sobhan, M. A., and MacDonald, R. J., Nucl. Instrum. Methods B 39, 153 (1989).Google Scholar
36. Paine, B. M. and Averback, R. S., Nucl. Instrum. Methods 7 /8, 666 (1985).Google Scholar
37. Rehn, L. E. and Okamoto, P. R., Nucl. Instrum. Methods B39, 104 (1989).Google Scholar
38. Seitz, F., Physics Today, June 1952, p. 6.Google Scholar
39. Blewitt, T. H. and Coltman, R. R., Phys. Rev. 85, 324 (1952).Google Scholar
40. Lomer, W. M., U.K.A.E.A. Report AERE-T/R-1540, (1954) (unpublished).Google Scholar
41. Dienes, G. J. and Damask, A. C., J. Appl. Phys. 29, 1713 (1958).Google Scholar
42. Sizmann, R., J. Nucl. Materials 69 /70, 386 (1968).Google Scholar
43. Lam, N. Q. and Rothman, S. J., in Radiation Damage in Metals, edited by Peterson, N. L. and Harkness, S. D. (American Society for Metals, Ohio, 1975), p. 125.Google Scholar
44. Bourgoin, J. C. and Corbett, J. W., Rad. Effects, 36, 157 (1978).Google Scholar
45. Myers, S. M., Nucl. Instrum. Methods 168, 265 (1980).Google Scholar
46. Matteson, S., Roth, J., and Nicolet, M-A., Radiat. Eff. 42, 217 (1979).Google Scholar
47. Cheng, Y.-T., Phys. Rev. Rapid Communications B 40, 7403 (1989).Google Scholar
48. Rauschenbach, B., Phys. Stat. Sol. A 102, 645 (1987).Google Scholar
49. de Rues, R., Vredenberg, A. M., Voorrips, A. C., Tissink, H. C., and Saris, F. W., Nucl. Instrum. Methods B (to be published).Google Scholar
50. King, B. V., Tonn, D. G., and Tsong, I. S. T., Nucl. Instrum. Methods B7 /8, 607 (1985).Google Scholar
51. Tonn, D. G., Sankey, O. F., and Tsong, I. S. T., Nucl. Instrum. Methods B15, 193 (1986).Google Scholar
52. Macht, M.-P. and Naundorf, V., Nucl. Instrum. Methods B15, 189 (1986).Google Scholar
53. Lam, N. Q. and Hoff, H. A., Surf. Sci. 193, 353 (1988).Google Scholar
54. Li, R. S. and Koshikawa, T., Surf. Sci. 151, 459 (1985).Google Scholar
55. Swartzfager, D. G., Ziemecki, S. B., and Kelley, M. J., J. Vac. Sci. Technol. 19, 185 (1981).Google Scholar
56. Marton, D., Fine, J., and Chambers, G. P., Phys. Rev. Lett. 61, 2697 (1988).Google Scholar
57. Simko, S. J., Cheng, Y.-T., and Millitello, M. C., J. Vac. Sci. Technol. (in press).Google Scholar
58. Smith, J. R. and Banerjea, A., Phys. Rev. Lett. 59, 2451 (1987).Google Scholar
59. Rolland, R. and Aufray, B., Surf. Sci. 162, 530 (1985).Google Scholar
60. Fine, J. and Andreadis, T. D., Nucl. Instrum. Methods 209 /210, 521 (1983).Google Scholar
61. Meinel, K., Lichtenberger, O., and Klaua, M., Phys. Stat. Sol. A116, 47 (1989).Google Scholar
62. de Boer, F. R., Boom, R., Mattens, W. C. M., Miedema, A. R., and Niessen, A. K., Cohesion in Metals (North-Holland, Amsterdam, 1988), p. 289.Google Scholar
63. Kelly, R., in Jon Bombardment Modification of Surfaces: Fundamentals and Applications, edited by Auciello, O. and Kelly, R. (Elsevier, Amsterdam, 1894), p. 27.Google Scholar