Skip to main content Accessibility help
×
Home

Similarities and Differences in the Mechanisms of High and Low Energy Ion Mixing

  • Yang-Tse Cheng (a1), Steven J. Simko (a1), Maria C. Militello (a1), Audrey A. Dow (a1), Gregory W. Auner (a2), M. H. Alkaisi (a2) and K. R. Padmanabhan (a2)...

Abstract

High energy ion mixing occurs when an ion beam of a few hundred keV bombards an interface under the surface. Low energy ion mixing arises when an ion beam of a few keV bombards an interface near the surface during, for example, sputter depth profiling and low energy ion assisted deposition. At low temperatures, the rate of both high and low energy ion mixing can be influenced by thermodynamic parameters, such as the heat of mixing and the cohesive energy of solids. These effects are demonstrated by ion mixing experiments using metallic bilayers consisting of high atomic number elements. A model of diffusion in thermal spikes is used to explain this similarity. Low energy ion mixing can also be strongly affected by surface diffusion and the morphological stability of thin films. These effects are illustrated using results obtained from sputter depth profiling of Ag/Ni bilayers at elevated temperatures. High energy ion mixing at low temperatures can be influenced by the anisotropic momentum distribution in a collision cascade as seen from a set of marker experiments to determine the dominant moving species in high energy ion mixing. These similarities and differences between high and low energy ion mixing illustrate the diversity of ion-solid interactions.

Copyright

References

Hide All
1. Lee, D. H., Hart, R. R., Kiewit, D. A., and Marsh, O. J., Phys. Stat. Sol. (a) 15, 645, (1973).
2. Cullis, A. G., Borders, J. A., Hirvonen, J. K., Poate, J. M., Phil. Mag. B 37, 615 (1978).
3. Poate, J. M., J. Vac. Sci. Technol. 15, 1636 (1978).
4. Tsaur, B. Y. and Mayer, J. W., Phil. Mag. A 43, 345 (1981).
5. Liu, B. X., Ma, E., Li, J., and Huang, L. J., Nucl. Instrum. Methods B 19 /20, 682 (1987).
6. Lutz, H. and Sizmann, R., Phys. Lett. 5, 113 (1963).
7. Rossnagel, S. M. and Cuomo, J. J., MRS Bulletin, Feb./March, 40 (1987).
8. Mattox, D. M., J. Vac. Sci. Tech. A7, 1105 (1989).
9. Wolf, G. K., Barth, M., Eusinger, W., Nucl. Instrum. Methods B37 /38, 683 (1989).
10. Haff, P. K. and Switkowski, Z. E., J Appl. Phys. 48, 3383 (1977).
11. Matteson, S., Appl. Phys. Lett. 39, 288 (1981).
12. Sigmund, P. and Gras-Marti, A., Nucl. Instrum. Methods 168, 389 (1980).
13. Sigmund, P. and Gras-Marti, A., Nucl. Instrum. Methods 182 /183, 25 (1981).
14. Hofer, W. O. and Littmark, U., Phys. Lett. 71A, 457 (1979).
15. Littmark, U. and Hofer, W. O., Nucl. Instrum. and Methods 168, 329 (1980).
16. Roosendaal, H. E. and Sanders, J. B., Nucl. Instrum. Methods 218, 673 (1983).
17. Sanders, J. B., Westendorp, J. F. M., Vredenberg, A. M., and Saris, F. W., Nucl. Instrum. Methods B19 /20, 659 (1987).
18. Kelly, R. and Sander, J. B., Surf. Sci. 57, 143 (1976).
19. Winterbon, K. B., Sigmund, P., and Sanders, J. B., Mat. Fys. Medd. Dan. Vid. Selsk. 37, 1 (1970).
20. Wang, Z. L., Westendrop, J. F. M., and Saris, F. W., Nucl. Instrum. Methods 209 /210, 115 (1983).
21. Van Rossum, M., Shreter, U., Johnson, W. L., and Nicolet, M.-A., Mat. Res. Soc. Symp. Proc. 27, 127 (1984).
22. Cheng, Y.-T., Mat. Sci. Reports 5, 45 (1990).
23. Cheng, Y.-T., Van Rossum, M., Nicolet, M-A., and Johnson, W. L., Appl. Phys. Lett. 45, 185 (1984).
24. Van Rossum, M., Cheng, Y.-T., Nicolet, M.-A., and Johnson, W. L., Appl. Phys. Lett. 46, 610 (1985).
25. Johnson, W. L., Cheng, Y.-T., Van Rossum, M., and Nicolet, M-A., Nucl. Instrum. Methods B 7 /8, 657 (1985).
26. Cheng, Y.-T., Workman, T. W., Nicolet, M-A., and Johnson, W. L., Mat. Res. Soc. Symp. Proc. Vol. 74, 419 (1987).
27. Traverse, A., Le Boite, M. G., Nevot, L., Pardo, B., and Corno, J., Appl. Phys. Lett. 51, 1901 (1987).
28. Akano, U. G., Thompson, D. A., Davies, J. A., and Smeltzer, W. W., J. Mater. Res. 3, 1057 (1988).
29. Sanders, J. B., Westendorp, J. F. M., Vredenberg, A. M., and Saris, F. W., Nucl. Instrum. Methods B19 /20, 659 (1987).
30. Cheng, Y.-T., Auner, G. W., Alkaisi, M. H., Padmanabhan, K. R., and Kar-markar, M. M., Nucl. Instrum. Methods (in press).
31. Auner, G. W., Cheng, Y.-T., Alkaisi, M. H., and Padmanabhan, K. R., Appl. Phys. Lett. 58, 586 (1991).
32. Cheng, Y.-T., Dow, A. A., and Clemens, B. M., Appl. Phys. Lett. 53, 1346 (1988).
33. Cheng, Y.-T., Dow, A. A., Clemens, B. M., and Cirlin, E.-H., J. Vac. Sci. Tech. A 7, 1641 (1989).
34. Cirlin, E.-H., Cheng, Y.-T., Ireland, P., and Clemens, B. M., Surface and Interface Analysis 15, 337 (1990).
35. King, B. V., Puranik, S. G., Sobhan, M. A., and MacDonald, R. J., Nucl. Instrum. Methods B 39, 153 (1989).
36. Paine, B. M. and Averback, R. S., Nucl. Instrum. Methods 7 /8, 666 (1985).
37. Rehn, L. E. and Okamoto, P. R., Nucl. Instrum. Methods B39, 104 (1989).
38. Seitz, F., Physics Today, June 1952, p. 6.
39. Blewitt, T. H. and Coltman, R. R., Phys. Rev. 85, 324 (1952).
40. Lomer, W. M., U.K.A.E.A. Report AERE-T/R-1540, (1954) (unpublished).
41. Dienes, G. J. and Damask, A. C., J. Appl. Phys. 29, 1713 (1958).
42. Sizmann, R., J. Nucl. Materials 69 /70, 386 (1968).
43. Lam, N. Q. and Rothman, S. J., in Radiation Damage in Metals, edited by Peterson, N. L. and Harkness, S. D. (American Society for Metals, Ohio, 1975), p. 125.
44. Bourgoin, J. C. and Corbett, J. W., Rad. Effects, 36, 157 (1978).
45. Myers, S. M., Nucl. Instrum. Methods 168, 265 (1980).
46. Matteson, S., Roth, J., and Nicolet, M-A., Radiat. Eff. 42, 217 (1979).
47. Cheng, Y.-T., Phys. Rev. Rapid Communications B 40, 7403 (1989).
48. Rauschenbach, B., Phys. Stat. Sol. A 102, 645 (1987).
49. de Rues, R., Vredenberg, A. M., Voorrips, A. C., Tissink, H. C., and Saris, F. W., Nucl. Instrum. Methods B (to be published).
50. King, B. V., Tonn, D. G., and Tsong, I. S. T., Nucl. Instrum. Methods B7 /8, 607 (1985).
51. Tonn, D. G., Sankey, O. F., and Tsong, I. S. T., Nucl. Instrum. Methods B15, 193 (1986).
52. Macht, M.-P. and Naundorf, V., Nucl. Instrum. Methods B15, 189 (1986).
53. Lam, N. Q. and Hoff, H. A., Surf. Sci. 193, 353 (1988).
54. Li, R. S. and Koshikawa, T., Surf. Sci. 151, 459 (1985).
55. Swartzfager, D. G., Ziemecki, S. B., and Kelley, M. J., J. Vac. Sci. Technol. 19, 185 (1981).
56. Marton, D., Fine, J., and Chambers, G. P., Phys. Rev. Lett. 61, 2697 (1988).
57. Simko, S. J., Cheng, Y.-T., and Millitello, M. C., J. Vac. Sci. Technol. (in press).
58. Smith, J. R. and Banerjea, A., Phys. Rev. Lett. 59, 2451 (1987).
59. Rolland, R. and Aufray, B., Surf. Sci. 162, 530 (1985).
60. Fine, J. and Andreadis, T. D., Nucl. Instrum. Methods 209 /210, 521 (1983).
61. Meinel, K., Lichtenberger, O., and Klaua, M., Phys. Stat. Sol. A116, 47 (1989).
62. de Boer, F. R., Boom, R., Mattens, W. C. M., Miedema, A. R., and Niessen, A. K., Cohesion in Metals (North-Holland, Amsterdam, 1988), p. 289.
63. Kelly, R., in Jon Bombardment Modification of Surfaces: Fundamentals and Applications, edited by Auciello, O. and Kelly, R. (Elsevier, Amsterdam, 1894), p. 27.

Similarities and Differences in the Mechanisms of High and Low Energy Ion Mixing

  • Yang-Tse Cheng (a1), Steven J. Simko (a1), Maria C. Militello (a1), Audrey A. Dow (a1), Gregory W. Auner (a2), M. H. Alkaisi (a2) and K. R. Padmanabhan (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed