Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T19:02:03.733Z Has data issue: false hasContentIssue false

Silver Nanowires Eelectrodeposited from Reverse Hexagonal Liquid Crystals

Published online by Cambridge University Press:  21 March 2011

Limin Huang
Affiliation:
Department of Chemical & Environmental Engineering, University of California, Riverside, CA 92521, USA.
Huanting Wang
Affiliation:
Department of Chemical & Environmental Engineering, University of California, Riverside, CA 92521, USA.
Zhengbao Wang
Affiliation:
Department of Chemical & Environmental Engineering, University of California, Riverside, CA 92521, USA.
Anupam Mitra
Affiliation:
Department of Chemical & Environmental Engineering, University of California, Riverside, CA 92521, USA.
Yushan Yan
Affiliation:
Department of Chemical & Environmental Engineering, University of California, Riverside, CA 92521, USA.
Get access

Abstract

A novel, simple and efficient procedure was developed to electrodeposit one-dimensional Ag nanowires from reverse hexagonal liquid crystalline phases by using their one-dimensional cylindrical aqueous microdomains as space-confined reactors. Using this soft-template approach, flexible Ag nanowire arrays with wire diameter of 15-30 nm, high aspect ratio over 1000, and high wire densities over 1011 wires/cm2 were obtained. The Ag nanowire arrays can be easily collected by simply washing. The nanowires obtained can be used either in high-density bundle form or as single wires after dispersion by untrasonication.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Martin, C. R., Chem. Mater. 8, 1739 (1996).Google Scholar
2. Duan, X. F., Huang, Y., Cui, Y., Wang, J. F., and Lieber, C. M., Nature 409, 66 (2001).Google Scholar
3. Whitney, T. M., Jiang, J. S., Searson, P. C., and Chien, C. L., Science 261, 1316 (1993).Google Scholar
4. Wu, C. G. and Bein, T., Science 264, 1757 (1994).Google Scholar
5. Huber, C. A., Huber, T. E., Sadoqi, M., Lubin, J. A., Manalis, S., and Prater, C. B., Science 263, 800 (1994).Google Scholar
6. Sloan, J., Wright, D. M., Woo, H. G., Bailey, S., Brown, G., York, A. P. E., Coleman, K. S., Hutchison, J. L., and Green, M. L. H., Chem. Commun. 8, 699 (1999).Google Scholar
7. Goviindaraj, A., Satishkumar, B. C., Nath, M., and Rao, C. N. R., Chem. Mater. 12, 202 (2000).Google Scholar
8. Han, Y. J., Kim, J. M., and Stucky, G. D., Chem. Mater. 12, 2068 (2000).Google Scholar
9. Huang, M. H., Choudrey, A., and Yang, P. D., Chem. Commun. 12, 1063 (2000).Google Scholar
10. Thurn-Albrecht, T., Schotter, J., Kastle, G. A., Emley, N., Shibauchi, T., Krusin-Elbaum, L., Guarini, K., Black, C. T., Tuominen, M. T., and Russell, T. P., Science 290, 2126 (2000).Google Scholar
11. Kresge, T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., Beck, J. S., Nature 359, 710 (1992).Google Scholar
12. Lu, Y. F., Ganguli, R., Drewien, C. A., Anderson, M. T., Brinker, C. J., Gong, W. L., Guo, Y. X., Soyez, H., Dunn, B., Huang, M. H., and Zink, J. I., Nature 389, 364 (1997).Google Scholar
13. Attard, G. S., Bartlett, P. N., Coleman, N. R. B., Elliott, J. M., Owen, J. R., and Wang, J. H., Science 278, 838 (1997).Google Scholar
14. Trau, M., Yao, N., Kim, E., Xia, Y., Whitesides, G. M., and Aksay, I. A., Nature 390, 674 (1997).Google Scholar
15. Ekwall, P., Mandell, L., and Fontell, K., Molecular Crystals and Liquid Crystals 8, 157 (1969).Google Scholar
16. Li, M., Schnablegger, H., and Mann, S., Nature 402, 393 (2000).Google Scholar
17. Popkirov, G. S., Burmeister, M., and Schindler, R. N., J. Electroanal. Chem. 380, 249 (1995).Google Scholar
18. Vashkyalis, A. and Demontaite, O., Soviet Electrochemistry 14, 8, 1050 (1978).Google Scholar