Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-11T07:59:08.304Z Has data issue: false hasContentIssue false

Silicon Nitride Containing Rare Earth Silicate Intergranular Phases

Published online by Cambridge University Press:  25 February 2011

Stephen D. Nunn
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6087
Terry N. Tiegs
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6087
Kristin L. Ploetz
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6087
Claudia A. Walls
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6087
Nelson Bell
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6087
Get access

Abstract

Si3N4 ceramics prepared with refractory grain boundary phases to improve high temperature properties are difficult to densify by conventional sintering methods. Gas-pressure sintering may be used to promote densification and development of acicular grains for improved fracture toughness. The current study examined rare earth silicate sintering aids with the composition M2Si2O7, where M is a trivalent cation (Y, La, Nd). M2O3 and Si02 additions were varied to develop a number of compositions in the Si3N4—Si2N2O—M2Si2O7 ternary phase field. Pressureless sintering and gas-pressure sintering were used to densify the samples. Densification, microstructure development, oxidation resistance, and mechanical properties were evaluated and compared with respect to compositional variations and processing conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Carruthers, D. and Lindburg, L., in Ceramic Materials and Components for Engines, edited by Tennery, V. J. (American Ceramic Society, 1988) pp. 12581272.Google Scholar
2. Tsai, R. L. and Raj, R., J. Am. Ceram. Soc., 63 [9-10] 513–17 (1980).Google Scholar
3. Knickerbocker, S. H., Zangvil, A., and Brown, S. D., J. Am. Ceram. Soc., 68 [4] C99101 (1985).Google Scholar
4. Hirosaki, N., Okada, A., and Mitomo, M., J. Mater. Sci., 25 (1990) 1872–76.Google Scholar
5. Hirosaki, N., Okada, A., and Akimune, Y., J. Mater. Sci. Letters, 9 (1990) 1322–23.Google Scholar
6. Greskovich, C., J. Am. Ceram. Soc., 64 [12] 725–30 (1981).Google Scholar
7. Okada, A. and Hirosaki, N., J. Mater. Sci., 25 (1990) 1656–61.Google Scholar
8. Mitomo, M. and Uenosono, S., J. Am. Ceram. Soc., 75 [1] 103108 (1992).Google Scholar
9. Hattori, Y., Tajima, Y., Yabuta, K., Matsuo, J., Kawamura, M., and Watanabe, T., in Ceramic Materials and Components for Engines, edited by Bunk, W. and Hausner, H. (Verlag, FRG, 1986) pp. 165172.Google Scholar
10. Tani, E., Umebayashi, S., Kishi, K., Kobayashi, K., and Nishijima, M., Am. Ceram. Soc. Bull., 65 [9] 1311–15 (1986).Google Scholar
11. Li, C.-W. and Yamanis, J., Ceram. Eng. Sci. Proc., 10 [7-8] 632–45 (1989).Google Scholar
12. Anstis, G. R., Chantikul, P., Lawn, B. R., and Marshall, D. B., J. Am. Ceram. Soc., 64 [9] 533–38 (1981).Google Scholar
13. Chantikul, P., Anstis, G. R., Lawn, B. R., and Marshall, D. B., J. Am. Ceram. Soc., 64 [9] 539–43 (1981).Google Scholar
14. Mieskowski, D. M. and Sanders, W. A., J. Am. Ceram. Soc., 68 [7] C160–C163 (1985).Google Scholar
15. Kishi, K., Umebayashi, S., and Tani, E., J. Mater. Sci., 25 (1990) 2780–84.Google Scholar
16. Becher, P. F., J. Am. Ceram. Soc., 74 [2] 255–69 (1991).Google Scholar