Skip to main content Accessibility help
×
Home

Silicon Nanowire Growth at Relatively Low Processing Temperature

  • Joondong Kim (a1), Chunhai Ji (a1) and Wayne A. Anderson (a1)

Abstract

The Metal Induced Growth (MIG) of nanowires has the potential to alter the conventional lithographic techniques to provide an easier fabrication method in nanoelectronics. Our group has studied the MIG technique to synthesize poly-silicon and nano size structures. This work gave silicon nanowires of 20∼200 nm diameter, 3∼10νm length and single crystal structure. Until now, the growing of silicon nanowires has been understood by two models. One is an oxide- assisted mechanism and the other is a metal catalyst assisted mechanism. Both cases need higher growth temperatures above 900°C. We are now proposing the repeatable growth of silicon nanowires at a low processing temperature, 550∼600°C, which is the lowest silicon nanowire growth temperature without using a gas type silicon source (silane).

This novel method to grow silicon nanowires has several advantages: (1) low processing temperature; (2) straight line growth; (3) single crystal structure and (4) repeatability. This Si nanowire growing mechanism is based on NiSi formation.

Copyright

References

Hide All
1. Lu, M., Li, M.K., Kong, L.B., Guo, X.Y., Li, H.L., Chem. Phys. Lett. 374, 542 (2003).
2. Wang, N., Tang, Y.H., Zhang, Y.F., Lee, C.S., Bello, I., Lee, S.T., Chem. Phys. Lett. 299, 237 (1999).
3. Huang, Yu, Duan, Xiangfeng, Cui, Yi, Lauhon, Lincoln J., Kim, Kyoung-Ha, Lieber, Charles M., Science 294, 1313 (2001).
4. Zhou, G. W., Li, H., Sun, H. P., Yu, D. P., Wang, Y. Q., Huang, X. J. and Chen, L. Q., Zhang, Z., Appl. Phys.Lett. 75, 2447 (1999).
5. Hua, S.F., Wonga, W.Z., Liua, S.S., Wua, Y.C., Sunga, C.L., Huangb, T.Y., Solid State Comm. 125, 351 (2003).
6. Kim, Gi Bum, Yoo, Do-Joon, Baik, Hong Koo, Myoung, Jae-Min, Lee, Sung Man, Oh, Sang Ho and Park, Chan Gyung, J.Vac. Sci.Tech. B 21, 319 (2003).
7. Gambino, J. P. and Colgan, E. G., Mat.Chem.Phys. 52, 99 (1998).
8. Zeng, X.B., Xu, Y. Y., Zhang, S.B., Hu, Z.H., Diao, H.W., Wang, Y.Q., Kong, G.L., Liao, X.B., J. Crystal Growth 247, 13 (2003).
9. Westwater, J., Gosain, D. P., Tomiya, S., Usui, S., Ruda, H., J.Vac. Sci.Tech. B 15, 554 (1997).
10. Cui, Yi, Lauhon, Lincoln J., Gudiksen, Mark S., Appl. Phys. Lett. 78, 2214 (2001)
11. Morales, Alfredo M. and Lieber, Charles M., Science 279, 208 (1998).
12. Feng, S.Q., Yu, D.P., Zhang, H.Z., Bai, Z.G., Ding, Y., J. Crystatl Growth 209, 513 (2000).
13. Yan, H.F., Xing, Y.J., Hang, Q.L., Yu, D.P., Wang, Y.P., Xu, J., Xi, Z.H., Feng, S. Q., Chem. Phys. Lett. 323, 224 (2000).
14. Chen, Xihong, Xing, Yingjie, Xu, Jun, Xiang, Jie, Yu, Dapeng, Chem. Phys. Lett. 374, 626 (2003).
15. Lee, Kyung Sun, Mo, Young Hwan, Nahm, Kee Suk, Shim, Hyun Wook, Suh, Eun Kyung, Kim, Jae Ryoung, Kim, Ju Jin, Chem Phys. Lett. 384, 215 (2004).
16. Zhang, Y.F., Tang, Y.H., Lam, C., Wang, N., Lee, C.S., Bello, I., Lee, S.T., J. Crystal Growth 212, 115 (2000).
17. Tu, K. N., Ottaviani, G., Gösele, U., and Föll, H., J. Appl. Phys., 54, 758 (1983).
18. Guliants, E.A., Anderson, W.A., Guo, L.P., Guliants, V.V., Thin Solid Films 385, 74(2001).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed