Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T08:10:37.371Z Has data issue: false hasContentIssue false

Silicon Delta Doping in GaAs: An Ongoing Enigma

Published online by Cambridge University Press:  26 February 2011

R. C. Newman
Affiliation:
IRC Semiconductor Materials, The Blackett Laboratory, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BZ, United Kingdom
M. J. Ashwin
Affiliation:
IRC Semiconductor Materials, The Blackett Laboratory, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BZ, United Kingdom
J. Wagner
Affiliation:
Fraunhofer Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany
M. R. Fahy
Affiliation:
IRC Semiconductor Materials, The Blackett Laboratory, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BZ, United Kingdom
L. Hart
Affiliation:
IRC Semiconductor Materials, The Blackett Laboratory, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BZ, United Kingdom
S. N. Holmes
Affiliation:
IRC Semiconductor Materials, The Blackett Laboratory, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BZ, United Kingdom
C. Roberts
Affiliation:
IRC Semiconductor Materials, The Blackett Laboratory, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BZ, United Kingdom
Get access

Abstract

Infrared (IR) absorption and Raman scattering are reported from the localized vibrational modes (LVM) of Al and Si δ-layer superlattices in MBE (100) GaAs grown at 400°C as a function of the total areal concentrations, [A1]A and [Si]A respectively. The Al superlattices show the expected behavior on passing from sub-monolayer (ML) to thicker layers (thin AlAs) since the impurities still occupy only Ga-sites. The behavior is very different from that found for Si δ-layers. In addition to SiGa reported previously, we now show that SiAs, SiGa-SiAs pairs and the electron trap Si-X are also present in Si δ-layers and superlattices for 0.05 ≤ [Si]A≤ 0.5 ML. The conductivity of these structures and the concentrations of substitutional Si in GaAs at all sites fall to zero for [Si]A> 0.5 ML but a Raman feature at 470–490 cm−1, attributed to the vibrations of covalent Si-Si bonds is then detected. This feature is not observed in structures containing very closely spaced dilute (0.01 ML) Si δ-planes. It is inferred that long-range Si diffusion does not occur in the bulk crystal, although there could be surface diffusion during Si deposition. The maximum measured carrier concentrations are always less than 2 × 1019 cm−3, the DX limit. The redistribution of Si amongst the various lattice sites is discussed in terms of SiGa DX-like displacements occurring during growth, followed by local thermally activated diffusion jumps. It is speculated that AsGa antisite defects and Ga-vacancies are produced by this process. The reason why the Si δ-layer is non-conducting remains unclear.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Köhler, K., Ganser, P. and Maier, M., J. Cryst. Growth 127, 720 (1993).Google Scholar
[2] Maguire, J., Murray, R., Newman, R. C., Beall, R. B. and Harris, J. J., Appl. Phys. Lett 50, 516 (1987).Google Scholar
[3] Murray, R., Newman, R. C., Sangster, M. J. L., Beall, R. B., Harris, J. J., Wright, P. J., Wagner, J. and Ramsteiner, M., J. Appl. Phys. 66, 2589 (1989).Google Scholar
[4] Maude, D. K., Portal, J.C., Murray, R., Foster, T.J., Dmowski, L., Eaves, L., Newman, R.C., Basmaji, P., Gibart, P., Harris, J.J. and Beall, R.B., in Physics of DX-centers in GaAs alloys (Solid State Phenomena 10) ed. J. C. Bourgoin (Liechtenstein Sci.-Tech) p121.Google Scholar
[5] Ogawa, M. and Baba, T., Jpn. J. Appl. Phys. 24, L572 (1985).Google Scholar
[6] Briones, F., Gonzalez, L. and Ruiz, A., Appl. Phys. A49, 729 (1989).Google Scholar
[7] Ramsteiner, M., Wagner, J., Hiesinger, P., Köhler, K. and Rössler, U., J. Appl. Phys. 73, 5023 (1993).Google Scholar
[8] McQuaid, S. M., Newman, R. C., Missous, M. and O’Hagan, S., Appl. Phys. Lett., 61, 3008 (1992); J. Cryst. Growth 127, 515 (1993).Google Scholar
[9] Ploog, K., Hauser, M. and Fischer, A., Appl. Phys. A45, 233 (1988).Google Scholar
[10] Schubert, E. F., J. Vac. Sci. Technol., 8, 2980 (1990).Google Scholar
[11] Harris, J. J., J. Mat.Sci: Materials in Electronics, 4, 93 (1993).Google Scholar
[12] Zrenner, A. and Koch, F., in Properties of Impurity States in Superlattice Semiconductors, ed. Fong, C. Y., Batra, I. P. and Ciraci, S., NATO ASI Series B (1988) Plenum NY) p1.Google Scholar
[13] Ashwin, M. J., Fahy, M. R., Harris, J. J., Newman, R. C., Sansom, D. A., Addinall, R., McPhail, D. S. and Sharma, V. K. M., J. Appl. Phys. 73, 633 (1993).Google Scholar
[14] Clegg, J. B. and Beall, R. B., Suf. Int. Anal. 14, 307 (1989).Google Scholar
[15] Hart, L., Fahy, M. R., Newman, R. C. and Fewster, P. F. Appl. Phys. Lett. 18, 2218 (1993).Google Scholar
[16] Hart, L., Ashwin, M. J., Fewster, P. F., Zhang, X., Fahy, M. R. and Newman, R. C., Semicond. Sci. Technol 10, 32 (1994).Google Scholar
[17] Wagner, J., Newman, R. C. and Roberts, C., unpublished work (1995).Google Scholar
[18] Brandt, O., Crook, G. E., Ploog, K., Wagner, J. and Maier, M., Appl. Phys. Lett. 59, 2730 (1991).Google Scholar
[19] Newman, R. C., Semicond. Sci. Technol. 9, 1749 (1994).Google Scholar
[20] Ashwin, M. J., Fahy, M. R., Hart, L., Newman, R. C. and Wagner, J., J. Appl. Phys. 76, 7627 (1994).Google Scholar
[21] Dewdney, A. J., Holmes, S., Yu, H., Fahy, M. R. and Murray, R., Superlattices and Microstructures 14, 205 (1993).Google Scholar
[22] Tanino, H., Kawanami, H., Matsuhata, H., Appl. Phys. Lett. 60, 1978 (1992).Google Scholar
[23] Jones, R. and Öberg, S., unpublished work (1995).Google Scholar
[24] Wagner, J., Mater. Sci. Forum 65–66, 1 (1990).Google Scholar
[25] Avery, A.R., Holmes, D.H., Sudijono, J.L., Jones, T.S., Fahy, M.R. and Joyce, B.A., J.Cryst. Growth, Proc. MBE VIII, in press (1995).Google Scholar
[26] Chadi, D.J. and Chang, K.J., Phys. Rev. Lett. 61 873 (1988).Google Scholar
[27] Warrren, A.C., Woodhall, J.M., Kirchner, P., Yiu, X., Pollak, F., Melloch, M.R., Otsuka, N. and Mahalingam, K., Phys. Rev. B46, 4617 (1992).Google Scholar
[28] Beall, R. B., Clegg, J. B., Castagné, J., Harris, J. J., Murray, R. and Newman, R. C., Semicond. Sci. Technol. 4, 1171 (1989).Google Scholar
[29] Wolk, J.A., Kruger, M.B., Heyman, J.N., Walukiewicz, W., Jeanloz, R. and Haller, E.E., Phys. Rev. Lett. 66, 774(1991).Google Scholar
[30] Sharma, V.K.M., McPhail, D.S. and Fahy, M.R., Surface and Interface Analysis, in press (1995).Google Scholar