Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T11:30:27.525Z Has data issue: false hasContentIssue false

Silicon Crystallization from Annealed Cu/A-Si:H Bilayers: A Multitechnique Study

Published online by Cambridge University Press:  15 February 2011

C. A. Achete
Affiliation:
PEMM, COPPE, Universidade Federal do Rio de Janeiro, 21910, Rio de Janeiro, RJ, Brazil
L. Bernardino
Affiliation:
PEMM, COPPE, Universidade Federal do Rio de Janeiro, 21910, Rio de Janeiro, RJ, Brazil
F. L. Freire Jr
Affiliation:
Dipartimento di Fisica, Università di Trento, 38050, Povo (TN), Italy
G. Mariotto
Affiliation:
Dipartimento di Fisica, Università di Trento, 38050, Povo (TN), Italy
H. Niehus
Affiliation:
ICV/Forschungszentrum, Jülich, Federal Republic of, Germany
Get access

Abstract

Silicon crystallization has been observed to occur in copper/a-Si:H thin film bilayers annealed at 280 °C. Copper-silicide formation was observed after annealing at 200 °C. Samples characterization was made by a combination of several analytical techniques: scanning electron Microscopy, Raman spectroscopy through a microscope probe, Auger electron spectroscopy, elastic recoil detection analysis and Rutherford backscattering spectrometry. The possible role of hydrogen in this process is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lian, J., Shacham-Diamand, Y. and Mayer, J.W., Mat. Sci. Rep. 9, 1 (1992).Google Scholar
2. Batstone, J.L., Phil. Mag. A 67 (1993) 51.Google Scholar
3. Csepregi, L., Mayer, J.W. and Sigmon, T.W., Phys. Lett. A 54, 157 (1975).Google Scholar
4. Pasa, A.A., Schubert, M.B., Adel, C.D., Beyer, W., Losch, W. and Bauer, G.H. in Amorphous Silicon Technology - 1992. edited by Thompson, M.J., Hamakawa, Y., LeComber, P.G., Madam, A. and Schiff, E.A. (Mater. Res. Soc. Proc. 258, Pittsburgh, PA, 1992) pp. 129134.Google Scholar
5. Konno, T.J. and Sinclair, R., Phil. Mag. A 66, 749 (1992).Google Scholar
6. Kawazu, Y., Kudo, H., Onari, S. and Arai, T., Jpn. J. Appl. Phys. 29, 2689 (1990).Google Scholar
7. Rüssel, S.W., Lian, J. and Mayer, J.W., J. Appl. Phys. 70, 5153 (1991).Google Scholar
8. Tsai, C.C., Nemanich, R.J. and Thompson, M. J. Vac. Sci. Technol. 21, 632 (1982).Google Scholar
9. Mavi, H. S., Shukla, A. K., Abbi, S.C. and Jain, K.P., J. Appl. Phys. 66, 5322 (1989).Google Scholar
10. Cros, A., Aboelfotoh, M. O. and Tu, K.N., J. Appl. Phys. 67, 3328 (1990).Google Scholar
11. Banholzer, W.F. and Burrel, M.C., Surf. Sci. 176, 125 (1986).Google Scholar
12. Campbell, I.H. and Fauchet, P.M., Solid State Commun. 58, 739 (1986).Google Scholar
13. Vuppuladhadium, R., Jackson, H.E., Boyd, J.T., J. Appl. Phys. 73, 4887 (1993).Google Scholar
14. Gonzalez-Hernandez, J., Tsu, R.S., Azarbayejani, G.H. and Polak, F.H., Appl. Phys. Lett. 47, 1350 (1985).Google Scholar
15. dos Santos, D.R. and Torriani, I.L., Solid State Commun. 85, 307 (1993).Google Scholar
16. Dallaporta, H. and Cros, A., Surf. Sci. 178 (1986) 64.Google Scholar
17. Hiraki, A., Surf. Sci. Rep. 3, 357 (1984).Google Scholar
18. Bian, B., Yie, J., Li, B. and Wu, Z., J. Appl. Phys. 73, 7402 (1993).Google Scholar