Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-21T07:33:26.011Z Has data issue: false hasContentIssue false

Silicon Clathrates: Synthesis and Characterization

Published online by Cambridge University Press:  10 February 2011

Ganesh K. Ramachandran
Affiliation:
Dept. of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, krganesh@imap3.asu.edu
Jason Diefenbacher
Affiliation:
Science and Engineering of Materials, Arizona State University, Tempe, AZ 85287
Otio F. Sankey
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504
Renu Sharma
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704
Robert F. Marzke
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504
Michael O'keeffe
Affiliation:
Dept. of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604
Jan Gryko
Affiliation:
Dept. of Physical and Earth Sciences, Jacksonville State University, Jacksonville, AL 36235
Paul F. Mcmillan
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704
Get access

Abstract

Two types of silicon clathrates, NaxSi136 (0≤ × ≤ 24) and Na8Si46 and a mixed clathrate (Na,Ba)Si46 were synthesized and characterized by X-ray diffraction, 23Na NMR and high resolution TEM. Systematic changes in X-ray diffraction intensities enabled the sodium content and site occupancy in the NaxSi136 series to be followed and then refined by Rietveld profile analysis. 23Na NMR spectra of Na8Si46 and NaxSi136 samples reveals two peaks with large paramagnetic shifts (1600-2000 ppm) for each phase, associated with the presence of Na atoms in two different environments. High resolution electron microscopy reveals the clathrate structures of these samples, and allows classes of defects to be characterized.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Cros, C., Pouchard, M. and Hagenmuller, P., C. R. Acad. Sc. 260, 4764 (1965).Google Scholar
2 Kasper, J. S., Hagenmuller, P., Pouchard, M. and Cros, C., Science 150, 1713 (1965).Google Scholar
3 Yamanaka, S., Horie, H., Nakano, H. and Ishikawa, M., Fullerene Sci. Tech. 3, 21 (1995).Google Scholar
4 Larson, A. C. and Dreele, R. B. Von, GSAS Generalized Structure Analysis System, LANSCE, MS-H805, Manual Lujan Neutron Scattering Center, Los Alamos, NM, 1989.Google Scholar
5 Gryko, J., McMillan, P. F., Sankey, O. F., Phys. Rev. B 54, 3037 (1996).Google Scholar
6 Chizmeshya, A., Sankey, O. F., in prep.Google Scholar
7 Nistor, L., Tendeloo, G. Van, Amelinkx, S. and Cros, C., Phys. Stat. Sol. 146, 119 (1994).Google Scholar
8 Sharma, R., Ramachandran, G. K., Sankey, O. F. and McMillan, P. F., in prep.Google Scholar
9 Gryko, J., McMillan, P. F. Marzke, R. F., Dodokin, A. P., Demkov, A. A., Sankey, O. F., Phys. Rev. B 57, 4172 (1998).Google Scholar