Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T12:36:58.760Z Has data issue: false hasContentIssue false

Silicon Carbide: the Premier Paradigm for Structural and Microelectronic Device Applications in Severe Environments

Published online by Cambridge University Press:  10 February 2011

Robert F. Davis*
Affiliation:
Materials Science and Engineering, North Carolina State University, Raleigh, NC 27607-7907
Get access

Abstract

The extreme thermal, mechanical, corrosion resistant and electronic properties of SiC provide multiplicative combinations of attributes which allow a variety of products for very different applications. The emphasis herein will be the consideration of both the constant stress creep properties of several types of polycrystalline SiC materials and the characteristics of different SiC-based devices having high power, high frequency and switching applications and which are operational at ≥573K. The controlling mechanism in reaction-bonded SiC within the ranges of temperature and stress of 1848K-1923K and 110–220 MPa, respectively, is glide/climb controlled by climb. The controlling creep mechanism in CVD material at T<1873K is dislocation glide controlled by the Peierls stress; above this temperature, the evidence suggests that dislocation glide/climb controlled by climb becomes an increasingly important mechanism. For sintered α-SiC within the respective temperature and stress ranges of 1670K-2073K and 138–414 MPa, the controlling creep mechanisms are grain boundary sliding accommodated by grain boundary diffusion at T<1800K and lattice diffusion at T> 1920K. By contrast, the continual development of SiC thin film deposition and the device related technologies of doping, contacts and dry etching have culminated in a host of microelectronic devices operable at high temperatures, namely, MOSFET high power devices, MESFET high frequency devices, and switches including p-n junctions and thyristors. The properties of selected devices and circuits made from them are described with an emphasis on their operation at high temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bhatnagar, M. and Baliga, B. J., IEEE Transactions on Electron Devices 40, p. 645 (1993).Google Scholar
2. Tairov, Y. M. and Tsvetkov, V. F., J. Cryst. Growth 43, p. 209 (1978).Google Scholar
3. Davis, R. F., Carter, C. H. Jr. and Hunter, C. E., U. S. Patent 4,866,005 (1989).Google Scholar
4. Barrett, D. L., Seidensticker, R. G., Gaida, W., Hopkins, R. H. and Choyke, W. J., J. Cryst. Growth 109, p. 17 (1991).Google Scholar
5. Powell, J. A., Petit, J. B. and Matus, L. G., Trans. 1st Int. High Temp. Electron. Conf. Albuquerque, NM, p. 192 (1991).Google Scholar
6. Kong, H. S., Glass, J. T. and Davis, R. F., J. Appl. Phys. 64, p. 2672 (1988).Google Scholar
7. Matsunami, H., Shibahara, K., Kuroda, N., Yoo, W. and Nishino, S., in Amorphous and Crystalline Silicon Carbide, edited by Harris, G. L. and Yang, C. Y., (Springer Proc. in Physics, Vol.34, Berlin, 1989), p. 3444.Google Scholar
8. Kim, H. J., J. Electrochem. Soc. 15, p. 2350 (1986).Google Scholar
9. Edmond, J. A., Withrow, S. P., Kong, H. S. and Davis, R. F., in Amorphization and recrystallization processes in monocrystalline beta-SiC thin films” in Beam-Solid Interactions and Phase Transformations, edited by Kurz, H., Olsen, G. L. and Poate, J. M. (Mater. Res. Soc. Symp. Proc.51, Pittsburgh, PA, 1986) p. 395402.Google Scholar
10. Larkin, D. J., Neudeck, P. G., Powell, J. A. and Matus, L. G., in Silicon Carbide and Related Materials: Proc. Fifth Intl. Conf., edited by Spencer, M. G. et al. (Institute of Physics Conf. Series, No. 137, Bristol, United Kingdom: IOP Publishing 1994) p. 5158.Google Scholar
11. Larkin, D. J., Neudeck, P. G., Powell, J. A. and Matus, L. G., Appl. Phys. Lett. 65, p. 1659 (1994).Google Scholar
12. Neudeck, P. G., Larkin, D. J., Powell, J. A., Matus, L. G. and Salupo, C. S., Appl. Phys. Lett. 64, p. 1386 (1994).Google Scholar
13. Kordina, O., Hallin, C., Glass, R. C. and Janzen, E. in Silicon Carbide and Related Materials: Proc. Fifth Intl. Conf., edited by Spencer, M. G. et al. (Institute of Physics Conf. Series, No. 137, Bristol, United Kingdom: IOP Publishing 1994) p. 4146.Google Scholar
14. Davis, R. F., Kelner, G., Shur, M., Palmour, J. W. and Edmond, J. A., Proceed. IEEE 79, p. 677 (1991).Google Scholar
15. Silicon Carbide and Related Materials: Proc. Fifth Intl. Conf., edited by Spencer, M. G. et al. (Institute of Physics Conf. Series, No. 137, Bristol, United Kingdom: IOP Publishing 1994).Google Scholar
16. Rumsey, J. C. and Roberts, A. L., Proc. Br. Ceram. Soc. 2, p. 233 (1967).Google Scholar
17. Marshall, P. and Jones, R. B., Powder Metall. 12, p. 1993 (1969).Google Scholar
18. Krishnamachari, V. and Notis, M. R., Mater. Sci. Eng. 2, p. 83 (1977).Google Scholar
19. Schnurer, K., Grathwol, G. and Thummler, F., in Science of Ceramics 10, (edited and published by Deutsche Keramische Gesellschaft, Berlin, 1980), pp. 645652.Google Scholar
20. Carter, C. H. Jr., Davis, R. F. and Bentley, J., J. Am. Soc. 67, p. 409 (1984).Google Scholar
21. McHenry, K. D. and Tressler, R. E., J. Am. Ceram. Soc. 64, p. 152 (1980).Google Scholar
22. Carter, C. H. Jr., Davis, R. F. and Bentley, J., J. Am. Soc. 67, p. 409 (1984).Google Scholar
23. Carroll, D. F. and Tressler, R. E., J. Am. Ceram. Soc. 71, p. 172 (1988); 72, p. 49 (1989).Google Scholar
24. Hockey, B. J. and Wiederhorn, S. M., J. Am. Ceram. Soc. 75, p. 1822 (1992).Google Scholar
25. Fields, B. A. and Wiederhorn, S. M., Scripta Metall. Mater. 29, p. 777 (1993).Google Scholar
26. Carter, C. H. Jr., Davis, R. F. and Bentley, J., J.Am. Ceram. Soc. 67, p. 732 (1984).Google Scholar
27. Hong, J. D. and Davis, R. F., J. Am. Ceram. Soc., 63, p. 546(1980).Google Scholar
28. Hong, J. D., Newberry, D. E. and Davis, R. F., J. Mater. Sci., 16, p. 2485 (1981).Google Scholar
29. Hon, M. and Davis, R. F., J. Mater. Sci., 14, p. 2411 (1979).Google Scholar
30. Farnsworth, P. L. and Coble, R. L., J. Am. Ceram. Soc. 49, p. 264 (1966).Google Scholar
31. Tajima, Y. and Kingery, W. D., J. Mat. Sci. 17, p. 2289 (1982).Google Scholar
32. Hamminger, , Grathwohl, G. and Thummler, F., J. Mat. Sci. 18, p. 353 (1983).Google Scholar
33. Hamminger, R., Grathwohl, G. and Thummler, F., J. Mat. Sci. 18, p. 3154 (1983).Google Scholar
34. Davis, R. F., Lane, I. E., Carter, C. H. Jr., Bentley, J., Waldin, W. H., Griffis, D. P., Linton, R. W. and More, K. L., Scann. Electron. Micros. 1984/11I, p. 1161 (1984).Google Scholar
35. More, K. L., Carter, C. H. Jr., Bentley, J., Wadlin, W. H.. LaVanier, L. and Davis, R. F., J. Am. Ceram. Soc. 69, p. 695 (1986).Google Scholar
36. Backhaus-Ricoult, M., Mozdzierz, N and Evans, P., J. Phys. 3, p. 2189 (1993).Google Scholar
37. Grathwohl, , Reets, T. H. and Thummler, F., Science of Ceramics 11, p. 425 (1982).Google Scholar
38. Lane, J. E., Carter, C. H. Jr. and Davis, R. F., J. Am. Ceram. Soc. 71, p. 281 (1988).Google Scholar
39. Corman, G. S., J. Am. Ceram. Soc. 75, p. 3421 (1992).Google Scholar
40. Yang, C. Y., Rahman, M. M. and Harris, G. L., Amorphous and Crystalline Silicon Carbide IV (Springer-Verlag, Berlin).Google Scholar
41. Spencer, M., Devaty, R. P., Edmond, J. A., Khan, M. A., Kaplan, R. and Rahman, M., Silicon Carbide and Related Materials, Proc. Fifth Intl. Conf. (Institute of Physics Conference Series No. 137, Institute of Physics Publishing, Philadelphia, 1994).Google Scholar
42. Rowland, L. B., Kern, R. S., Tanaka, S. and Davis, R. F., J. Mater. Res. 8, 2753 (1993).Google Scholar
43. Rowland, L. B., Kern, R. S., Tanaka, S. and Davis, R. F., J. Mater. Res. 8, 1993 (1993).Google Scholar
44. Sumakeris, J. and Davis, R. F., Thin Solid Films 225, 219 (1993).Google Scholar
45. King, D. B. and Thome, F. V., Trans. 2nd Intl. High Temperature Electronics Conf., (Sandia National Laboratories, Albukerque, NM, 1994).Google Scholar
46. Palmour, J. W., Kong, H. S. and Davis, R.F., J. Appl. Phys. 64, pp. 21682177, April 1988.Google Scholar
47. Palmour, J. W., Kong, H. S., and Davis, R. F., “High temperature depletion mode metal-oxidesemiconductor field-effect transistors in Beta-SiC thin films,” Appl. Phys. Lett., vol.51, pp. 20282030, November 1987.Google Scholar
48. B.Slater, D. Jr., Lipkin, L. A., Johnson, G. M., Suvorov, A. V. and Palmour, J. W., presented at the Sixth International Conference on SiC and Related Materials, Kyoto, Japan, Sept. 1995.Google Scholar
49. Brown, D. M., Ghezzo, M., Kretchmer, J., Krishnamurthy, V., Michon, G. and Gati, G., in Trans. 2nd.Intl. High Temperature Electronics Conf. Charlotte, NC, p. XI17 (1994).Google Scholar
50. Xie, W., Pan, J., Cooper, J. A. Jr. and Melloch, M. R., presented at the 21st International Symposium on Compound Semiconductors, 1994.Google Scholar
51. Cooper, J. A. Jr. and Melloch, M. R., presented at the WOCSEMMAD Conf., San Francisco, CA, 1994.Google Scholar
52. Palmour, J. W. and Waltz, D. G., presented at the Workshoop on High Temperature Power Electronics for Vehicles, Fort Monmouth, NJ, Apr. 1995.Google Scholar