Skip to main content Accessibility help

Silicides for the 65 nm Technology Node

  • Paul R. Besser (a1), Simon Chan (a2), Eric Paton (a2), Thorsten Kammler (a3), David Brown (a4), Paul King (a2) and Laura Pressley (a5)...


At the 65 nm node, silicide faces formidable challenges. Co is the current process of record for most integrated circuit manufacturers and thus becomes baseline silicide for 65 nm. However, Ni is the likely replacement. Both silicides are challenged to meet the requirements at the 65 nm node. This manuscript reviews the current CoSi2 challenges (dopant interactions, Ge interactions, linewidth extendibility, impurity effects, agglomeration issues, etc). Ni consumes less Si but has its own challenges, including issues with contact leakage and thermal budget, excessive diffusion and oxidation, interactions with dopant and impurities. Both silicides have formation and stability issues in the presence of Ge. Additions of Ge increase the temperature at which a low resistance CoSi2 is formed due to film segregation into CoSi2 and Ge-rich Si-Ge grains. With Ni, additions of Ge decrease the temperature at which NiSi converts to a NiSi2, lead to agglomeration at a lower temperature and lead to germanosilicide formation.



Hide All
1. Goto, K. et al., Tech. Digest of IEEE IEDM, 18.2.1 (1995)
2. Clevenger, L.A. et al., IBM J. Res. Develop. 39(4), p. 403 (1995).
3. Maex, K., Materials Science and Engineering, R11, Nos. 2-3 (1993).
4. Yamazaki, T. et al., Proceedings IEEE IEDM, 6.7.1 (1993).
5. Berti, A.C. and Bolkhovsky, V., Proc. of the 1992 VMIC Conf., p. 267 (1992).
6. Tung, R.T. and Schrey, F., Appl. Phys. Lett. 67(15), p. 2164 (1995).
7. Wang, Q.F. et al., 1995 Symp of VLSI Tech. Digest of Technical Papers, p. 17 (1995).
8. Sukegawa, T. et al., Jap. J. Appl. Phys. 36, p. 6244 (1997).
9. Besser, P.R. et al., MRS Symposium Proceedings 514, p. 375 (1998).
10. Lauwers, A. et al., Proceedings of the Int. Interconnect Technology Conference, 99 (1998).
11. Maex, K. et al., IEEE Trans. El. Dev., 46(7), p.1545 (1999).
12. Maex, K. et al., Mat. Res. Soc. Symp. Proc. 525, p. 297, (1998).
13. Kondoh, E. and Maex, K.; Mat. Res. Soc. Proc. 470, p. 245 (1997).
14.“The International Technology Roadmap for Semiconductors” (2001).
15. Thompson, S. et al., Tech. Digest of IEEE IEDM, 3.2.1 (2002).
16. Lu, J.P. et al., Tech. Digest of IEEE IEDM, 14.5.1 (2002).
17. Xiang, Q., Electrochemical Society Proceedings 2002-2, p. 354 (2002).
18. Gannavaram, S., et al, Tech. Dig. of IEEE IEDM, 437, (2000).
19. Huang, H.J., et al., J. Appl. Phys., 88, 1831(2000).
20. Lauwers, A. et al., Proc. Materials for Advanced Metallization (1999).
21. d'Heurle, F.M. and Peterson, C.S., Thin Solid Films 128, p. 283 (1985).
22. Detavernier, C. et al., MRS Symp.Proc. 611, C8.4.1 (2001).
23. Lavoie, C. et al., Proc. Advanced Metallization Conference (2001).
24. Rinderknecht, J. et al., Proc. Materials for Advanced Metallization (2002).
25. Wieczorek, K. et al., MRS Symp.Proc. 611, p. C5.1 (2001).
26. Meer, H. van den and Meyer, K. d., 2002 Symp. on VLSI Technology (2002).
27. Murarka, S.P., Silicides for VLSI Applications, Academic Press, New York, 1983.
28. Lavoie, C. et al., Defect and Diffusion Forum 194-199, 14771490 (2001)
29. Lavoie, C. et al., Electrochem. Soc. Symp. Proc. 2002-11, 455467 (2002)
30. Detavernier, C. et al., J. Appl. Phys. 93, p. 2510 (2003)
31. Rinderknecht, J. et al., Microelectronic Engineering 64, p. 143 (2002).
32. Xu, D.X. et al., Mat. Res. Soc. Proc. 402, p. 59 (1996).
33. Chen, J. et al. J. Electrochem. Soc. 144(7), P. 2437 (1997).
34. Xiang, Q. et al., ISTDM 2003 (2003).
35. Xiang, Q. et al., To be published at 2003 Symp. on VLSI Technology (2003).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed