Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-04-30T22:27:24.690Z Has data issue: false hasContentIssue false

Silicide Formation using Laser and Electron Beams

Published online by Cambridge University Press:  15 February 2011

T. W. Sigmon
Affiliation:
Stanford Electronics Laboratories, Stanford, California, 94305
Get access

Abstract

The reaction of thin metal films with single crystal or amorphous silicon to form silicide compounds has been successfully undertaken using both scanned-cw and pulsed beam processing. Similar to the case for beam annealing of ion-implanted semiconductors, both the basic mechanisms and the experimental results are found to depend on whether pulsed or scanned beams are used to promote the reactions. For both cases the experimental results are often found to differ sharply from those obtained with standard furnace processing. For the pulsed beam reaction, melting and rapid resolidification occurs in the metal silicon films. The principal result is that the reacted film is frozen in a mixed phase compound which can consist of several silicide compounds including silicon and metal precipitation. Compositions inaccessible by conventional furnace annealing can also be formed by this process. In contrast to the pulsed beam results, scanned-cw beam processing of metal silicon films is found to result in the formation of large area uniform silicide phases with essentially no silicon or metal precipitation. These films are generally found to be homogeneous with well defined silicon/silicide interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Crowder, B. L. and Zirinsky, S., IEEE Trans. on Elec. Dev. ED–26, 369, (1979).Google Scholar
2. Shah, P. L., IEEE Trans. on Elec. Dev. ED–26, 631 (1979).Google Scholar
3. Yu, H. N., Reisman, A., Osburn, C. M. and Critchlow, D. L., IEEE Trans. on Elec. Dev. ED–26, 318 (1979).Google Scholar
4. Poate, J. M., Leamy, H. J., Sheng, T. T. and Celler, G. K., Appl. Phys. Lett. 33, 918 (1978).CrossRefGoogle Scholar
5. Liau, Z. L., Tsau, B. Y. and Mayer, J. W., Appl. Phys. Lett. 34, 221 (1979).Google Scholar
6. Shibata, T., Gibbons, J. F. and Sigmon, T. W., Appl. Phys. Lett. 36, 566 (1980).CrossRefGoogle Scholar
7. Sigmon, T. W., Regolini, J. L. and Gibbons, J. F., Symposium on Laser and Electron Beam Processing of Electronic Materials, Los Angeles, October 14–19, 1979.Google Scholar
8. Tsaur, B. Y., Liau, Z. L. and Mayer, J. W., Appl. Phys. Lett. 34, 168 (1979).Google Scholar
9. Tsaur, B. Y., Liau, Z. L. and Mayer, J. W., Phys. Lett. 71A, 270 (1979).Google Scholar
10. Kanayama, T., Tanoue, H. and Tsurushima, T., Appl. Phys. Lett. 35, 222 (1979).Google Scholar
11. Tsaur, B. Y., Lau, S. S. and Mayer, J. W., Appl. Phys. Lett. 35, 225 (1979).Google Scholar
12. Lau, S. S., Mayer, J. W., Tsaur, B. Y. and Allmen, M. von, in Laser and Electron Beam Processing of Materials, Ed. by White, C. W. and Peercy, P. S., 511, (New York, Academic Press, 1980).Google Scholar
13. Thin Films Interdiffusion and Reactions, Ed. by Poate, J. M., Tu, K. N. and Mayer, J. W. (New York: Wiley Interscience, 1978).Google Scholar
14. Lau, S. S., Maenpaa, M. and Mayer, J. W., in Laser and Electro Beam Solid Interactions and Materials Processing, Materials Research Society, 1980.Google Scholar
15. Gurp, G. J. van, Eggermont, G. E. J., Tamminga, Y., Stacy, W. T., and Gijsbers, J. R. M., Appl. Phys. Lett. 35, 273 (1979).Google Scholar
16. Stacy, W. T., Gurp, G. J. van, Eggermont, G. E. J., Tamminga, T. and Gijsbers, J. R. M., Proceedings of the Symposium on Thin Film Interfaces and Interactions, Ed. by Baglin, J. E. E. and Poate, J.M., 80–2, 442 (Electrochem. Soc., Princeton, 1980).Google Scholar
23. Cheung, N., Lau, S. S., Nicolet, M-A, Mayer, J. W. and Sheng, T. T., in Proceedings of the Symposium on Thin Film Interfaces and Interactions, Ed. by Baglin, J. E. E. and Poate, J. M. 80–2, 494 (Electrochem. Soc., Princeton, 1980).Google Scholar
24. Hutchins, G. A. and Shepola, A., Thin Solid Films 18, 343 (1973).Google Scholar
25. Baglin, J., d'Heurle, F. and Petersson, S., in Proceedings of the Symposium on Thin Film Interfaces and Interactions, Ed. by Baglin, J. E. E. and Poate, J. M. 80–2, 341 (Electrochem. Soc., Princeton, 1980).Google Scholar
26. Tsaur, B. Y., Mayer, J. W. and Tu, K. N., Proceedings of the Symposium on Thin Film Interfaces and Interactions, Ed. by Baglin, J. E. E. and Poate, J. M. 80–2, 264 (Electrochem. Soc., Princeton, 1980).Google Scholar
27. Kwo, J., Hammond, R. H., Geballe, T. H., J. Appl. Phys. 51(3), 1726 (1980).Google Scholar
28. Tsaur, B. Y. and Nicolet, M-A, Appl. Phys. Lett. 37, 708 (1980).Google Scholar