Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T23:51:23.176Z Has data issue: false hasContentIssue false

Silicidation Mechanism of Co/(Refractory-Metal) Bilayer and Epitaxial Growth of CoSi2 on Si(100) Substrate

Published online by Cambridge University Press:  03 September 2012

Jeong S. Byun
Affiliation:
Semiconductor Research Lab., GoldStar Electron Co. Ltd., 50 Hyangjeong- Dong Cheongju-Si, 360-480, Korea
Woo S. Kim
Affiliation:
Semiconductor Research Lab., GoldStar Electron Co. Ltd., 50 Hyangjeong- Dong Cheongju-Si, 360-480, Korea
Min S. Choi
Affiliation:
Semiconductor Research Lab., GoldStar Electron Co. Ltd., 50 Hyangjeong- Dong Cheongju-Si, 360-480, Korea
Ho J. Cho
Affiliation:
Dept. of Inorg. Materials Eng. Seoul National Univ., 151-742, Korea
Hyeong J. Klm
Affiliation:
Dept. of Inorg. Materials Eng. Seoul National Univ., 151-742, Korea
Get access

Abstract

The structures of CoSi2 formed from the bilayer of Co/(refractory metal) have been investigated. For a layer reversal and epitaxial growth of CoSi2 on Si substrate, the silicidation temperature of interposed refractory metal should be higher than that of Co and the oxidation potential of the refractory should also be negatively higher than that of Si to remove the native oxide on Si substrate. The main role of the refractory metal layer in the epitaxial growth of CoSi2 is to limit the Co diffusion to Si substrate, controlling the Co-Si reaction rate. Thus Co atoms are able to locate their stable positions with the lowest energy in CoSi2 lattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hsia, S.L., Tan, T.Y., Smith, P., and McGuire, G.E., J. Appl. Phys. 72, 1864 (1992)CrossRefGoogle Scholar
[2] Nicolet, M.-A. and Lau, S.S., VLSI Electronics Microscience Vol.6: Materials and Process Characterization, edited by Einspruch, N.G. and Larrbee, G.B., (Academic Press, NY, 1983) Chap.6Google Scholar
[3] Lawrence, M., Dass, A., Fraser, D.B., and Wei, C.-S., Appl. Phys. Lett. 58, 1308 (1991)Google Scholar
[4] Byun, J.S., Kang, S.B., Kim, H.J., Kim, C.Y., and Park, K.H., J. Appl. Phys. 74, 3156 (1993)CrossRefGoogle Scholar
[5] Byun, J.S., Cho, H.J., Kim, H.J., Kim, W.S., Choi, M.S., Chun, D., Proc. 10th V-MIC, Santa Clara, California, June (1993) p. 478 Google Scholar
[6] Massalsk, T.B., Binary Alloy Phase Diagrams (American Society for Metals, OH, 1986)Google Scholar
[7] Niessen, A.K., Miedema, A.R., Boer, F.R. de, and Boom, R., Physica, B151, 401 (1988)Google Scholar
[8] Beyer, R., J. Appl. Phys. 56, 147 (1984)CrossRefGoogle Scholar
[9] Pretorius, R., Mat. Res. Soc. Symp. Proc. 25, 15 (1984)CrossRefGoogle Scholar
[10] Edinton, J.W., Electron diffraction in the electronmicroscope: Vlo.2 of Practical electron microscopy in material science (Philips, Eindhoven Netherland, 1974)Google Scholar
[11] Bulle-Lieuwma, C.W.T., Ommen, A.H. van, Hornstra, J., and Aussens, C.N.A.M., J. Appl. Phys. 71, 2211 (1992)CrossRefGoogle Scholar