Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T13:14:12.817Z Has data issue: false hasContentIssue false

Si. I-x-y. GexCy Film Formation by Pulsed Excimer Laser Crystallization of Heavily Ge and C Implanted Silicon

Published online by Cambridge University Press:  21 February 2011

E. Fogarassy
Affiliation:
CNRS, Laboratoire PHASE (UPR 292-CNRS), BP 20, 67037 Strasbourg Cedex 2, France
D. Dentel
Affiliation:
CNRS, Laboratoire PHASE (UPR 292-CNRS), BP 20, 67037 Strasbourg Cedex 2, France
JJ. Grob
Affiliation:
CNRS, Laboratoire PHASE (UPR 292-CNRS), BP 20, 67037 Strasbourg Cedex 2, France
B. Prévot
Affiliation:
CNRS, Laboratoire PHASE (UPR 292-CNRS), BP 20, 67037 Strasbourg Cedex 2, France
J.P. Stoquert
Affiliation:
CNRS, Laboratoire PHASE (UPR 292-CNRS), BP 20, 67037 Strasbourg Cedex 2, France
R. Stuck
Affiliation:
CNRS, Laboratoire PHASE (UPR 292-CNRS), BP 20, 67037 Strasbourg Cedex 2, France
Get access

Abstract

We investigate, for the first time, the possibility to crystallize heavily Ge and C implanted silicon substrates by excimer-laser annealing performed in the molten regime. It is demonstrated that the crystalline quality of the laser grown SiGeC alloys strongly depends on the initial dose of implanted carbon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Soref, R.A., J. Appl. Phys. 70 (4), (1991) 2470.Google Scholar
2 Eberl, K., Iyer, S.S., Zollner, S., Tsang, J.C., Legoues, F.K., Appl. Phys. Lett. 60 (24), (1992), 3033.Google Scholar
3 Powell, A.R., Eberl, K., Ek, B.A., Iyer, S.S., J. of Crystal Growth 127 (1993) 425.Google Scholar
4 Osten, HJ., Bugiel, E., Zaumseil, P., Appl. Phys. Lett. 64 (25), (1994) 3440.Google Scholar
5 Regolini, J.L., Bodnar, S., Oberlin, J.C., Ferrieu, F., Gaun, M., Lambert, B., Boucaud, P., J. Vac. Sol. Technol. A 12 (4), (1994) 1015.Google Scholar
6 Atzmon, Z., Bair, A.E., Jaquez, E.J., Mayer, J.W., Chandrasekhar, D., Smith, D.J., Hervig, R.L., Robinson, McD., Appl. Phys. Lett. 65 (20), (1994) 2559.Google Scholar
7 Strane, J.W., Stein, H.J., Lee, S.R., Doyle, B.L., Picraux, S.T., Mayer, J.W., Appl. Phys. Lett. 63 (20), (1993) 2786.Google Scholar
8 Laser and Electron Beam Processing of Materials, edited by White, C.W. and Peercy, P.S. (Academic Press, New York, 1980).Google Scholar
9 Cullis, A.G., Series, R., Webber, H.C., Chew, N.G., Semiconductor Silicon, edited by Huff, H.R., Kriegler, R.J., Takeishi, Y. (Electrochemical Society, Pennington, NJ, 1981) p. 518.Google Scholar
10 Ziegler, J.F., Biersack, J.P., Littmark, U., The Stopping and Range of Ions in Solids. Vol. I (Pergamon, Oxford, UK, 1985).Google Scholar
11 Repplinger, F., Fogarassy, E., Grob, A., Grob, J.J., Müller, D., Prévôt, B., Stoquert, J.P. and de Unamuno, S., Thin Solid Films 241 (1994) 155.Google Scholar
12 Borders, J.A., Picraux, S.T., Beezhold, W., Appl. Phys. Lett. 18 (11), (1971) 509.Google Scholar
13 Tsang, J.C., Eberl, K., Zollner, S., Iyer, S.S., Appl. Phys. Lett. 61 (8), (1992) 961.Google Scholar