Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-19T08:13:54.689Z Has data issue: false hasContentIssue false

Si and Mg Doped Gan Layers Grown by Gas Source Molecular Beam Epitaxy Using Ammonia

Published online by Cambridge University Press:  10 February 2011

N. Grandjean
Affiliation:
Centre de Recherche sur l'Hétéro-Epitaxie et ses Applications, Centre National de la Recherche Scientifique, Rue Bernard Grégory, Sophia Antipolis, 06560 Valbonne, France
J. Massies
Affiliation:
Centre de Recherche sur l'Hétéro-Epitaxie et ses Applications, Centre National de la Recherche Scientifique, Rue Bernard Grégory, Sophia Antipolis, 06560 Valbonne, France
M. Leroux
Affiliation:
Centre de Recherche sur l'Hétéro-Epitaxie et ses Applications, Centre National de la Recherche Scientifique, Rue Bernard Grégory, Sophia Antipolis, 06560 Valbonne, France
Get access

Abstract

The growth of GaN layers was carried out on c-plane sapphire substrates by molecular beam epitaxy (MBE) using NH3. Undoped GaN layers were grown at 830°C with growth rates larger than 1 μm/h. Optical properties are characteristics of high quality GaN material and the linewidth of x-ray diffraction (0002) rocking curve is less than 350 arcsec. N- and p-type doping were achieved by using solid sources of Si and Mg. No post-growth annealing was needed to activate the Mg acceptors. As-grown GaN:Mg layers exhibit hole concentrations of 3×1017 cm−3and mobilities of 8 cm2/Vs at 300 K. Light emitting diodes (LEDs) based on GaN p-n homojunction have been processed. The turn on voltage is 3 V and the forward voltage is 3.7 V at 20 mA. The 300 K electroluminescence (EL) peaks at 390 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S. and Fasol, G., The Blue Laser Diode. Springer, Berlin, 1997 Google Scholar
2. Vaudo, R.P., Goepfert, I.D., Moustakas, T.D., Beyea, D.M., Frey, T.J., and Meehan, K., J. Appl. Phys. 79, 2779 (1996)Google Scholar
3. Riechert, H., Averbeck, R., Graber, A., Schienle, M., Strauss, U., and Tews, H., Mat. Res. Soc. Symp. Proc. Vol.449, p. 149 (1997)10.1557/PROC-449-149Google Scholar
4. Aktas, Ô., Kim, W., Fan, Z., Botchkarev, A., Salvador, A., Mohammad, S.N., Sverdlov, B., and Morkoç, H., Electron. Lett. 31, 1389 (1995)Google Scholar
5. Grandjean, N., Leroux, M., Laügt, M., and Massies, J., Appl. Phys. Lett. 71, 240 (1997)Google Scholar
6. Schubert, E.F., Goepfert, I.D., Grieshaber, W., and Redwing, J.M., Appl. Phys. Lett. 71, 921 (1997)Google Scholar
7. Lee, I.-H., Choi, I.-H., Lee, C.R, and Noh, S.K., Appl. Phys. Lett. 71, 1359 (1997)10.1063/1.119893Google Scholar
8. Kim, W., Botchkarev, A.E., Salvador, A., Popovici, G., Tang, H., and Morkoç, H., J,. Appl. Phys. 82, 219 (1997)10.1063/1.365801Google Scholar