Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T17:42:48.010Z Has data issue: false hasContentIssue false

Short Range Chemical Ordering in Bulk Metallic Glasses

Published online by Cambridge University Press:  17 March 2011

P. A. Sterne
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
P. Asoka-Kumar
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
J. H. Hartley
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
R. H. Howell
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
T.G. Nieh
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
K. M. Flores
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
D. Suh
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
R. H. Dauskardt
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
Get access

Abstract

We provide direct experimental evidence for a non-random distribution of atomic constituents in Zr-based multi-component bulk metallic glasses using positron annihilation spectroscopy. The Ti content around the open-volume regions is significantly enhanced at the expense of Cu and Ni, indicating that Cu and Ni occupy most of the volume bounded by their neighboring atoms while Ti and Zr are less closely packed and more likely to be associated with open-volume regions. Temperature-dependent measurements indicate the presence of at least two different characteristic sizes for the open volume regions. Measurements on hydrogen- charged samples show that the larger open-volume regions can be filled by hydrogen up to a critical density. Beyond this critical density, local atomic-scale open-volume damage is created in the sample to accommodate additional hydrogen. The onset of this local damage in positron annihilation data coincides with the onset of volume expansion in X-ray diffraction data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zhang, T., Inoue, A., and Masumoto, T., Mater. Trans., JIM 32, 1005 (1991).Google Scholar
2. Peker, A. and Johnson, W. L., Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
3. Johnson, W.L. and Peker, A., Science and Technology of Rapid Solidification and Processing, ed. Otooni, M.A., (Kluwer, Netherlands, 1995) pp. 25 Google Scholar
4. Rätzke, K., Hüppe, P.W. and Faupel, F., Phys. Rev. Lett. 68, 2347 (1992)Google Scholar
5. Bruck, H.A., Chrisman, T., Rosakis, A.J., and Johnson, W.L., Scripta Metall. 30, 429 (1994)Google Scholar
6. Positron Solid State Physics, ed. Brandt, W. and Dupasquier, A. (North-Holland, Amsterdam, 1983); Positron Spectroscopy of Solids, ed. A. Dupasquier and A.P. Mills, Jr., (IOS, Amsterdam, 1995)Google Scholar
7. Nagel, C., Rätzke, K., Schmidtke, E., Wolff, J., Geyer, U., and Faupel, F., Phys. Rev. B 57, 10224 (1998).Google Scholar
8. Asoka-Kumar, P., Hartley, J., Howell, R., Sterne, P.A. and Nieh, T.G., Appl. Phys. Lett. 77, 1973 (2000).Google Scholar
9. Matsui, S., J. Phys. Soc. Jpn. 61, 187 (1992)Google Scholar
10. Alatalo, M., Kauppinen, H., Saarinen, K., Puska, M.J., Mäkinen, J., Hautojärvi, P., and Nieminen, R.M., Phys. Rev. B 51, 4176 (1995)Google Scholar
11. Asoka-Kumar, P., Alatalo, M., Ghosh, V.J., Kruseman, A.C., Nielsen, B., and Lynn, K.G., Phys. Rev. Lett. 77, 2097 (1996)Google Scholar
12. Hartley, J.H., Howell, R.H., and Sterne, P.A., Applications of Accelerators in Research and Industry, ed. Duggan, J.L. and Morgan, I.L. (American Institute of Physics, New York, 1999) pp. 366 Google Scholar
13. Suh, D. and Dauskardt, R.H., Scripta Materiala 42, 233 (2000)Google Scholar
14. Suh, D. and Dauskardt, R.H., this symposium L1.3.6Google Scholar