Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-22T01:45:39.110Z Has data issue: false hasContentIssue false

Shallow Ion Implantation in Gallium Arsenide Mesfet Technology

Published online by Cambridge University Press:  26 February 2011

J. P. de Souza
Affiliation:
Instituto de Física, UFRGS, 91500 Porto Alegre, R. S., Brazil
D. K. Sadana
Affiliation:
Thomas J. Watson Research Center, IBM, Yorktown Heights, N. Y., 10598, USA
Get access

Abstract

This review emphasizes controlled shallow doping of GaAs by ion implantation for state-of-art GaAs IC technology. Electrical activation behavior of Si+ and SiF+ implanted GaAs after RTA under capless and PECVD Si3N4-capped conditions will be compared. It will be demonstrated that a remarkable improvement (> 20 %) both in carrier activation and as well mobility can be achieved by co-implanting low doses (< 1013 cm−2 of Al+ into n-dopant (including Si, Se and Te) implanted GaAs and subsequently annealing the material under capless RTA conditions. The maximum improvement in the electrical results with Al+ co-implants occurs for doses (e.g. < 1013 cm−2 for 30 keV Si+) which are used for fabricating shallow channels for submicron GaAs MESFETs. Complex dopant-annealing environment interactions during a buried p layer formation (using either Mg+ or Be+) will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brodsky, M. H., Scientific American, pg. 68, Febr. 1990.CrossRefGoogle Scholar
2. Eden, R. C. and Welch, B. M., in VLSI Electronics: Microestructure Science, vol. 3, edited by Einspruch, N. G. and Huff, H. (Academic Press, New York, 1982) p. 109.Google Scholar
3. Sealy, B. J., J. Inst. Electr. Rad. Eng. 52, 52 (1987).Google Scholar
4. Kirpatrick, C. G., Proc. IEEE 76, 792 (1988).CrossRefGoogle Scholar
5. Magerlein, J. H. et al., J. Appl. Phys. 61, 3080 (1987).CrossRefGoogle Scholar
6. Crow, J. D. et al., IEEE Trans. Electr. Devices, ED–36, 263 (1989).CrossRefGoogle Scholar
7. Eisen, F. H., in Ion Implantation and Beam Processing edited by Williams, J. S. and Poate, J. M. (Academic Press, New York, 1984) p. 327.CrossRefGoogle Scholar
8. Sealy, B. J., Int. Mat. Rev. 31, 38 (1988).Google Scholar
9. Pearton, S. J., Poate, J. M., Sette, F., Gibson, J. M., Jacobson, D. C. and Williams, J. S., Nucl. Instr. Meth. B19/20, 369 (1987).CrossRefGoogle Scholar
10. Nishi, H., Nucl. Instr. Meth. B7/8, 395 (1985).CrossRefGoogle Scholar
11. Yamazaki, H., Nucl. Instr. Meth. B39, 433 (1989).CrossRefGoogle Scholar
12. Hemment, P. L. F., Inst. Phys. Conf. Ser. no. 20, 44 (1976).Google Scholar
13. Stephens, K. G., Nucl. Instr. Meth. 209/210, 899 (1983).Google Scholar
14. Gill, S. S., Solid State Phenomena, 1&2, 281 (1988).Google Scholar
15. Haydl, W. H., IEEE Electr. Devices Lett. EDL–5, 78 (1984).Google Scholar
16. Kamber, H., Cipolli, R. J., Henderson, W. B. and Whelan, J. M., J. Appl. Phys. 51, 4732 (1985).CrossRefGoogle Scholar
17. Hiramamoto, T., Saito, T. and Ikoma, T., Jap. J. Appl. Phys. 24, L193 (1985).CrossRefGoogle Scholar
18. Armiento, C. A. and Prince, F. C., Appl. Phys. Lett. 41, 1623 (1986).CrossRefGoogle Scholar
19. Jackson, T. N., DeGelormo, J. F. and Pepper, G., Mat. Res. Soc. Symp. Proc. 144, 403 (1989).CrossRefGoogle Scholar
20. Oberstar, J. D. and Streetman, B. G., Thin Solid Films 103, 17 (1983).CrossRefGoogle Scholar
21. Wilson, M. R., Kosel, P. B., Shen, Y. D. and Welch, B. M., J. Electrochem. Soc. 134, 2560 (1987).CrossRefGoogle Scholar
22. Rao, V. B. and Koyama, R. Y., J. Electrochem. Soc. 131, 1674 (1984).CrossRefGoogle Scholar
23. Lidow, A., Gibbons, J. F. and Magee, T., Appl. Phys. Lett. 31, 158 (1977).CrossRefGoogle Scholar
24. Kuzuhara, M., Nozaki, T. and Kohzu, H., J. Appl. Phys. 51, 1204 (1985).CrossRefGoogle Scholar
25. Bensalem, R., Abid, A. and Sealy, B. J., Thin Solid Films 143, 141 (1986).CrossRefGoogle Scholar
26. Patel, K. K., Bensalem, R., Shahid, M. A. and Sealy, B. J., Nucl. Instr. Meth. B7/8, 418 (1985).CrossRefGoogle Scholar
27. Welch, B. M., Nelson, D. A., Shen, Y. D. and Venkataramen, R., in VLSI Electronics: Microestructure Science, vol. 15, edited by Einspruch, N. G. and Huff, H. (Academic Press, New York, 1987) p. 393.Google Scholar
28. Woodall, J. M., Braslau, N. and Freeouf, J., in Physics of Thin Films, vol. 13. (Academic Press, New York, 1987) p. 199.Google Scholar
29. Murakami, M., Mat. Sci. Rept. 5, 272 (1990).Google Scholar
30. Sadana, D. K., de Souza, J. P., Rutz, R. F., Cardone, F. and Norcott, M. H., Mat. Res. Soc. Symp. Proc. 147, 315 (1989).CrossRefGoogle Scholar
31. Tabatabaie-Alavi, K. and Smith, J. W., IEEE Trans. Electr. Devices ED–37, 96 (1990).CrossRefGoogle Scholar
32. Blunt, R. T. and Davies, P., J. Appl. Phys. 60, 1015 (1986).CrossRefGoogle Scholar
33. Hovel, H. J., McKoy, T. E., Mitchell, J. W., Scilla, G., Moore, S. J. and Cardone, F., Mat. Res. Soc. Symp. Proc. 144, 439 (1989).CrossRefGoogle Scholar
34. Sadana, D. K., Nucl. Instr. Meth. B7/8, 375 (1985).CrossRefGoogle Scholar
35. Nakamura, K. and Nozaki, T., Nucl. Instr. Meth. 37/38, 308 (1989).CrossRefGoogle Scholar
36. Chapman, R. L., Fan, J. C. C., Donnelly, J. P. and Tsaur, B-Y, Appl. Phys. Lett. 40, 805 (1982).CrossRefGoogle Scholar
37. Sealy, B. J., Barret, N. J. and Bensalem, R., J. Phys. D 19, 2147 (1986).CrossRefGoogle Scholar
38. Tamura, A. and Onuma, T., J. Appl. Phys. 64, 2044 (1988).CrossRefGoogle Scholar
39. Gray, M. C., Parsey, J. M. Jr, Ahrens, R. E., Pearton, S. J., Short, K. T., Sargent, L. and Blakemore, J. S., J. Appl. Phys. 66, 4176 (1989).CrossRefGoogle Scholar
40. Gwilliam, R., Deol, R. S., Blunt, R., Sealy, B. J., Inst. Phys. Conf. Ser. no. 81, 315 (1987).Google Scholar
41. Shahid, M. A., Gwilliam, R. and Sealy, B. J., Electr. Lett. 21, 729 (1985).CrossRefGoogle Scholar
42. de Souza, J. P., Sadana, D. K. and Hovel, J., Mat. Res. Soc. Symp. Proc. 144, 495 (1989).Google Scholar
43. de Souza, J. P., Sadana, D. K., Baratte, H. and Cardone, F., Appl. Phys. Lett. 57, 1129 (1990).CrossRefGoogle Scholar
44. Sadana, D. K., de Souza, J. P., Marshall, E. D., Baratte, H. and Cardone, F., Appl. Phys. Lett. 58, 385 (1991).CrossRefGoogle Scholar
45. Hyuga, F., Watanabe, K., Osaka, J., Hoshikawa, K., Appl. Phys. Lett. 48, 1742 (1986).CrossRefGoogle Scholar
46. Hyuga, F., Yamazali, H., Watanabe, K. and Osaka, J., Appl. Phys. Lett. 50, 1592 (1987).CrossRefGoogle Scholar
47. Sealy, B. J., Bell, E. C., Surridge, R. K., Stephens, K. G., Ambridge, T. and Hecking-bottom, R., Inst. Phys. Conf. Ser. no. 28, 75 (1976).Google Scholar
48. Farley, C. W., Kim, T. S. and Streetman, B. G., J. Electr. Mat. 16, 79 (1987).CrossRefGoogle Scholar
49. Inada, T., Kato, S., Ohkubo, T. and Hara, T., Rad. Eff. 48, 91 (1980).CrossRefGoogle Scholar
50. Ambridge, T. and Heckingbottom, R., Rad. Eff. 17, 31 (1973).Google Scholar
51. Favennec, P. N., J. Appl. Phys. 42, 2532 (1976).CrossRefGoogle Scholar
52. Whitehead, N. J. and Sealy, B. J., Solid State Electr. 33, 1493 (1990).CrossRefGoogle Scholar
53. Yamazaki, K., Kato, N., Hiramayama, M., Electr. Lett. 20, 1029 (1984).CrossRefGoogle Scholar
54. Yamazaki, K., Kato, N. IEEE Trans. Electr. Devices ED–32, 2430 (1985).Google Scholar
55. Tan, K. L., Chung, H -K., Chen, C. H., IEEE Electr. Dev. Lett. EDL–8, 440 (1987).CrossRefGoogle Scholar
56. Umemoto, Y., Takahashi, S., Matsunaga, N. and Nakamura, M., Electr. Lett. 20., 98 (1984).CrossRefGoogle Scholar
57. Yu, T -H. and Wang, S., Mat. Res. Soc. Symp. Proc. 92, 411 (1987).CrossRefGoogle Scholar
58. de Souza, J. P., Sadana, D. K., Baratte, H. and Cardone, F., Electrochem. Soc. Ext. Abstr. 90–1, 412 (1990).Google Scholar
59. de Souza, J. P., Mitchell, J. W. and Sadana, D. K., IBM Tech. Bull. 32, 153 (1990).Google Scholar