Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-17T19:32:57.039Z Has data issue: false hasContentIssue false

SFM Studies of the Surface Morphology of ICE

Published online by Cambridge University Press:  21 February 2011

Oleg Nickolayev
Affiliation:
Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
Victor Petrenko
Affiliation:
Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
Get access

Abstract

The nature and properties of the surface layer of ice are important in many applications. This layer possesses peculiar optical, electric and mechanical properties. Various experimental techniques based on indirect measurements give different values of the thickness of this layer and different temperature domains for its existence. A new direct method for investigation of the surface layer of ice can be provided by scanning force microscopy (SFM). We studied the surface of ice using NanoScope III in the temperature range from -2 to -25°C. Images of the surface of ice and force calibration curves (FCC) were obtained in the open air and in hexane. The problem of surface melting at higher temperatures is analyzed. Stable images of the ice surface were obtained at lower temperatures. It was found that at temperatures corresponding to the transition of the surface layer to the quasi-liquid state the surface morphology and FCC change. When ice is brought in contact with hexane FCC indicate a formation of an unusually thick (∼ 1 μm) surface film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hobbs, P. V., Ice Physics, (Clarendon Press, Oxford, UK, 1974), p. 392.Google Scholar
2 Petrenko, V. F., The surface of ice, (USA CRREL Special Report 1994–22, 1994).Google Scholar
3 Furucawa, Y., Yamamoto, M. and Kuroda, T., T., J. de Physique B 48, Cl495 (1987).Google Scholar
4 Furucawa, Y., Yamamoto, M. and Kuroda, T., T., J. de Physique B 48, Cl665 (1987).Google Scholar
5 Elbaum, M., Lipson, S. G. and Dash, J. G., J. Cryst. Growth 129, 491 (1993).Google Scholar
6 Mizuno, Y. and Hanafuza, N., J. de Physique C1 48, B1511 (1987).Google Scholar
7 Maeno, N., Physics and Chemistry of Ice, edited by Whalley, E., Jones, S.J. and Gold, L.W., (Royal Society of Canada, Ottawa, 1973), p. 140.Google Scholar
8 Golecki, I. and Jaccard, C., Phys. Lett. A 63, 374 (1977).Google Scholar
9 Golecki, I. and Jaccard, C., J. Phys. C 11, 4229 (1978).Google Scholar
10 Barer, S. S., Kvlividze, V. I., Kurzaev, A. B., Sobolev, V. D. and Churaev, N. V., Doklady Akademii Nauk USSR 235(3), 601 (1977).Google Scholar
11 Fletcher, N. H., Phil. Mag. 18, 1287 (1968).Google Scholar
12 Churaev, N. V., Bardasov, S. A. and Sobolev, V. D., Colloids and Surfaces A 79, 11 (1993).Google Scholar
13 Sonwalkar, N., Sunder, S. S. and Sharma, S. K., Appl. Spectr. 47(10), 1585 (1993).Google Scholar
14 Sarid, D., Scanning Force Microscopy, (Oxford Univesity Press, New York, 1991).Google Scholar
15 Burnham, N. A., Colton, R. J. and Pollock, H. M., J. Vac. Sci. Technol. A 9(4), 2548 (1991).Google Scholar
16 Hues, S. M., Colton, R. J., Meyer, E. and Guntherodt, H. J., MRS Bulletin XVIII(1) 41 (1993).Google Scholar
17 Weisenhorn, A. L., Maivald, P., Butt, H.J. and Hansma, P. K., P. K., , Phys. Rev. B. 45(19), 11226 (1992).Google Scholar
18 Hoh, J. H., Cleveland, J. P., Prater, C. B., Revel, J. P. and Hansma, P. H., J. Amer. Chem. Soc. 114, 4917 (1992).Google Scholar
19 Allegrini, M., Ascoli, C., Baschieri, P., Dinelly, F., Frediani, C., Lio, A. and Mariani, T., Ultramicroscopy 42–44, 371 (1992).Google Scholar
20 Grenfell, T.C. and Perovich, D. K., J. Geophys. Res. 86, 7447 (1981).Google Scholar
21 Schulson, E. M., Lim, P. N. and Lee, R. W., Phil. Mag. 49, 353 (1984).Google Scholar