Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T20:13:05.059Z Has data issue: false hasContentIssue false

Several Important Problems in YBaCuO and Its Doped Systems

Published online by Cambridge University Press:  26 February 2011

H. Zhang
Affiliation:
Department of Physics, Peking University, Beijing 100871, P.R.China
S.Q. Feng
Affiliation:
Department of Physics, Peking University, Beijing 100871, P.R.China
Q.R. Feng
Affiliation:
Department of Physics, Peking University, Beijing 100871, P.R.China
X. Zhu
Affiliation:
Department of Physics, Peking University, Beijing 100871, P.R.China
Z.Z. Gan
Affiliation:
Department of Physics, Peking University, Beijing 100871, P.R.China
Get access

Abstract

The orthorhombic-tetragonal transition, relationship between oxygen content and TC, electronic state of Cu and TC, lattice energy and TC in YBCO and its doped systems (Cu doped by Sn, Al, Fe, Zn, Ni; Ba by Sr, Ca; Y by Pr,Gd,Dy, respectively.) have been studied systematically. The experiments show that the O-T transition may not be the predominant factor governing superconductivity; there is no regular relationship between superconductivity and the oxygen content. In order to fully understand superconductivity, other defects must be considered; the valence of Cu has a strong correlation with oxygen content, but has no direct relationship with the TC value. The correlation among the electronic states of Ba, Cu and O are discovered, which is helpful to know the electfonic behavior of this material. Finally, we show that the lattice energy has a close relationship with the magnitude of TC. As the lattice energy is decreased, the TC is always depressed without any exception. The authors suggest that the lattice energy may be a probable predominant factor to superconductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cava, R.J., Bataogg, B., Van Dover, R.B., Marphy, D.W., Sunshine, S., Siegrist, T., Remcika, J. P., Zahurak, S., and Espinosa, G.P., Phys.Rev.Lett. 58 (1987), 1676.CrossRefGoogle Scholar
2. Hazen, R.M., Finger, L.W., Angel, R.J., Drewitt, C.T., Mao, H.K., Hadidiacos, C.G., Hor, P.R., Meng, R.L., and Chu, C.W., Phys.Rev. B35 (1987), 7238.CrossRefGoogle Scholar
3. Jorgensen, J.D., Veal, B.W., Kwok, W.K., Crabtree, G.W., Vmezawa, A., Nowicki, L.J., and Paulikas, A.P., Phys.Rev. B36 (1987), 5731.CrossRefGoogle Scholar
4. Jorgensen, J.D., Beno, M.A., Hinnks, D.G, Soderholm, L., Volin, K.J., Hitterman, R.L., Grace, J.D., Schuller, Ivan K, Segre, C.V., Zhang, K., and Kleefish, M., Phys.Rev. B36 (1987), 3608.CrossRefGoogle Scholar
5. Zhao, Y., Zhang, H., Sun, S.F., Zhang, M.J., Chen, Z.Y., and Zhang, Q.R., Physica C153–155 (1988), 1665.CrossRefGoogle Scholar
6. Zhao, Y., Zhang, H., Zhang, T., Sun, S.F., Chen, Z.Y., and Zhang, Q.R., Physica C152 (1988), 513.CrossRefGoogle Scholar
7. Xiao, G., Cieplak, M.Z., Gavrin, A., Streitz, F.H., Bakhsha, A., and Chen, C.L., Phys.Rev.Lett., 60 (1988), 1446.CrossRefGoogle Scholar
8. Chittipeddi, S., Song, Y., Cox, D.L., Gaines, J.R., and Epstein, A.J., Phys.Rev. B37 (1988), 7454.CrossRefGoogle Scholar
9. Goncalve, A.P., Santons, I.C., Lopes, E.B., Hanriques, R.T., Almeid, M. and Figueiredo, M.O., Phys.Rev. B37 (1988), 7476.CrossRefGoogle Scholar
10. Zhang, H., Zhao, Y., Zhou, X.Y., and Zhang, Q.R., Chin., J. Low Temp. Phys., 12 (1990).Google Scholar
11. Balestrino, G., Barbanera, S., Paoletti, A., Paroli, P., Vittori, M., Antisari, Google Scholar
12. Zolliker, P., Cox, D.E., Tranquada, J.M., and Shira, G., Phys.Rev. B38 (1988), 6575.CrossRefGoogle Scholar
13. Li, S., Hayri, E.A., Ramanujachary, K.V., and Greeblatt, M., Phys.Rev. B38 (1988), 2450.CrossRefGoogle Scholar
14. Tarascon, J.M., Barbox, P., Miceli, P.E., Green, L.H., Hull, C.W., Eibshutz, M., and Sunshine, S.A., Phys.Rev. B37 (1988), 7458.CrossRefGoogle Scholar
15. Zhang, H., Zhou, X.Y., hao, Y., Liu, S.H., and Zhang, Q.R., Solid State Comm. 72 (1989), 75.CrossRefGoogle Scholar
16. Zhang, H., Wang, G.M., and Zhang, Q.R., Phys.Lett. A138 (1989), 517.CrossRefGoogle Scholar
17. Sarma, D.D., Speedher, K., Ganguly, P., and Rao, C.R., Phys.Rev. B36 (1987), 2371.CrossRefGoogle Scholar
18. Kohiki, S. and Hamada, T., Phys.Rev. B36 (1987), 2290.CrossRefGoogle Scholar
19. Bandelet, F., Collin, G., Dartyge, E., Fontaine, A., Kappler, J.P., GKrill, , Itie, J.P., Jegaudez, J., Maurer, M., Monod, Ph., Revcolevsch, A. Tolentino, H., and Verdaguer, M., Z.Phys. B69 (1987), 141.CrossRefGoogle Scholar
20. Sacchi, M., Corni, F., Antonini, G.M., Calandra, C., Matacotta, E.C., Freham, R., Z.Phys. B72 (1988), 335.CrossRefGoogle Scholar
21. Werful, F., Heinonen, M., and Suoninen, E., Z.Phys. B70 (1988), 317.CrossRefGoogle Scholar
22. Gourieux, T., Krill, G., Maurer, M., Ravet, M.F., Mennv, A., Tolentino, H., and Fontaine, A., Phys.Rev. B37 (1988), 5158.Google Scholar
23. Nucher, N., Fink, J., Fuggle, J.C., Durham, P.J., and Temmerman, W.M., Phys.Rev. B37 (1988), 5158.CrossRefGoogle Scholar
24. Steiner, P., Hufer, S., Kinsing, V., Sander, I., Siegwart, B., Schmitt, H., Z.Phys. B69 (1988), 449.CrossRefGoogle Scholar
25. Frommer, M.H., Phys.Rev. B38 (1988), 2444.CrossRefGoogle Scholar
26. Balzarotti, A., Crescenzi, M.De, Motta, N., Patella, F., Phys. Rev. B38 (1988), 6461.CrossRefGoogle Scholar
27. Myhra, S., Riviere, J.C., Stewart, A.M., and Healy, P.C., Z.Phys. B72 (1988), 413.CrossRefGoogle Scholar
28. Dai, Y., Manthiram, A., Campion, A., and Goodenough, J.B., Phys.Rev. B38 (1988), 5901.Google Scholar
29. Kuiper, P., Kruizinga, G., Ghijsen, J., Grioni, M., and Petersen, H., Phys.Rev. B38 (1988), 6483.CrossRefGoogle Scholar
30. Richert, B.A. and Allen, R.E., Phys.Rev. B37 (1988), 7496.CrossRefGoogle Scholar
31. Zhang, H., Zhao, Y., Zhou, X.Y., Wang, S.X., and Zhang, Q.R., Solid State Commun. 71 (1989), 934.Google Scholar