Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T07:56:56.364Z Has data issue: false hasContentIssue false

Several Efficiency Influencing Factors In CdTe/CdS Solar Cells

Published online by Cambridge University Press:  10 February 2011

K. Li
Affiliation:
Institute of Materials Research and Engineering, Singapore 119260 Department of Physics, National University of Singapore, Singapore 119260
Z. C. Feng
Affiliation:
School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA EMCORE Corporation, 394 Elizabeth Avenue, Somerset, NJ 08873
A. T. S. Wee
Affiliation:
Department of Physics, National University of Singapore, Singapore 119260
H. C. Chou
Affiliation:
School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA Hewlett-Packard Company, Santa Rosa, CA 95403
J. Y. Lin
Affiliation:
Department of Physics, National University of Singapore, Singapore 119260
S. Kamra
Affiliation:
School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA
K. L. Tan
Affiliation:
Department of Physics, National University of Singapore, Singapore 119260
A. Rohatgi
Affiliation:
School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA
L. Zhou
Affiliation:
Department of Chemistry, National University of Singapore, Singapore 119260
S. F. Y. Li
Affiliation:
Department of Chemistry, National University of Singapore, Singapore 119260
Get access

Abstract

Several efficiency influencing factors in MOCVD-grown CdTe/CdS solar cells, including preferential crystal orientation of CdTe layers, CdTe grain size and surface roughness, interfacial mixing, and surface and interface geometrical morphology, are studied. X-ray diffraction (XRD) shows that polycrystalline CdTe/CdS solar cells with higher efficiencies tend to have more (111) planes of CdTe parallel to the macro-surface. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis reveal the relationship between the grain size/surface roughness and cell efficiency. Secondary ion mass spectroscopy (SIMS) and Auger electron spectroscopy (AES) depth profiling show that the interfacial geometrical morphology has a significant influence on the efficiency of CdTe/CdS solar cells. Finally it is shown that interfacial mixing reduces the number of interfacial states and recombination centers and the energy loss due to internal reflectance, enhancing the performance of the solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chu, T. L., Chu, Shirley S., Ferekides, C., Britt, J., and Wu, C. Q., J. Appl. Phys., 71 (1992) 3870.Google Scholar
2. Ferekides, C. and Britt, J., Solar Energy Mater. and Solar Cells, 35 (1994) 255.Google Scholar
3. Chu, T. L., Chu, Shirley S., Britt, J., Ferekides, C., Wang, C., Wu, C. Q., and Ullal, H. S., IEEE Electron Device Lett., 13 (1992) 303.Google Scholar
4. Ringel, S. A., Smith, A. W., MacDougal, M. H., and Rohatgi, A., J. Appl. Phys., 70 (1991) 88.Google Scholar
5. Chou, H. C., Bhat, A. K., Kamra, S., and Rohatgi, A, J. Electron. Mater., 23 (1994) 681.Google Scholar
6. Chou, H. C. and Rohatgi, R., J. Electron. Mater., 23 (1994) 31.Google Scholar
7. Feng, Z. C., Chou, H. C., Rohatgi, A., Lim, G. K., Wee, A. T. S., Tan, K. L., J. Appl. Phys., 79 (1996) 2151.Google Scholar
8. McCandless, B. E. and Birkmire, R. W., Solar Cells, 31 (1991) 527.Google Scholar
9. Das, S. K. and Morris, G. C., J. Appl. Phys., 72 (1992)4940.Google Scholar
10. Turner, A. K. et al, Solar Energy Mater., 23 (1991) 388.Google Scholar
11. Keitoku, S., and Ezumi, H., Solar Energy Mater. and Solar Cells, 35 (1994) 299.Google Scholar
12. Ahrenkiel, R. K., Keyes, B. M., Levi, D. L., and Emery, K., Appl. Phys. Lett., 64 (1994) 2879.Google Scholar
13. Pugh, J. R., Mao, D., Zhang, J., Heben, M. J., Nelson, A. J., and Frank, A. J., J. Appl. Phys., 74 (1993) 2619.Google Scholar
14. Feng, Z. C., Sudharsanan, R., Perkowitz, S., Erbil, A., Pollard, K. T. and Rohatgi, A., J. Appl. Phys. 64, 68616863 (1988).Google Scholar
15. Ozsan, M. E., Johnson, D. R., Lane, D. W. and Rogers, K. R., 12th Europen Photovoltaic Solar Energy Conf. (H.S. Stephens & Associates) ed. Hill, R.. Palz, W. and Helm, P., p. 1600 (1994).Google Scholar
16. Asian, M. H., Song, W., Tang, J., Mao, D., Collins, R. T., Levi, D. H., Ahrenkiel, R. K., Lindstrom, S. C. and Johnson, M. B., in this volume.Google Scholar