Skip to main content Accessibility help

Settling Behavior of Alumina Dispersions and Resultant Green Body Characteristics: Solvent, Binder, and Dispersant Competition in Model Systems

  • Anthony A. Parker (a1), Mei-Yuan Tsai (a1), Girma Biresaw (a1), Todd T. Stanzione (a1), George H. Armstrong (a1) and Joseph J. Marcinko (a2)...


The chemical functionality of binders, dispersants, and solvents will influence competitive adsorption/desorption behavior on alumina powder, and hence will affect both slurry and ultimate green tape properties. Given that multiple competitive interactions are common to most dispersions, it is usually difficult to ascertain mechanisms from simple settling density experiments. However, this problem can be partially overcome with the choice of model systems that minimize the number of competitive processes. This criterion is met to a first approximation with a model system of toluene solvent, polystyrene binder, and a C8 aliphatic dispersant with an anchor group of variable functionality. Plateau adsorption concentrations from settling experiments in toluene show that surface coverage for efficient dispersants is typically achieved at about 6μmoles/m2. Less efficient dispersants adsorb at higher plateau concentrations, and are eventually displaced after repeated washing steps in toluene. The settling densities of dispersions prepared with C8 dispersants are consistently higher than densities achieved in toluene alone, and as seen in a case study with n-octylsilane, the settling densities are independent of the presence of polystyrene. Green bodies cast from a polystyrene/Al2O3 slurry also show increased densities in the presence of n-octylsilane dispersant. However, despite the apparent low levels of interaction between polystyrene and n-octylsilane in the dispersion state, solid state NMR and dynamic mechanical results show that the solid state molecular motional behavior of polystyrene is strongly affected by the presence of n-octylsilane dispersant.



Hide All
1. Fox, J. R., Kokoropoulos, P. C., Wiseman, O. H., Bowen, H. K., J. Materials Sci., 22, 4528 (1987).
2. Mizuta, S., Parish, M., Bowen, H. K., Ceramics International, 10, 43 (1984).
3. Velamakanni, B. V., Lange, F. F., J. Am. Ceram. Soc., 74, 166 (1991).
4. Morrison, W. H., Johnson, R. E., Advances in Ceramics: Ceramics Substrates and Packages for Electronics Packaging, 26, 543 (1989).
5. Kerkar, A. V., Henderson, R. J. M., Feke, D. L., J. Am. Ceram. Soc., 73, 2886 (1990).
6. Stejskal, E. O., Schaefer, J., Macromolecules, 14, 275 (1981).
7. Cory, D. O., Ritchey, W. M., Macromolecules, 22, 1611 (1989).
8. Parker, A. A., Marcinko, J. J., Shieh, Y. T., Shields, C., Hedrick, D. P., Ritchey, W. M., Polym. Bull., 21, 229 (1989).
9. Fowkes, F. M., Dwight, D. W., Manson, J. A., Lloyd, T. B., Tischler, D. O., Shah, B. A., Material Research Soc. Symp. Proc., 119, 223 (1988).
10. Boyer, R. F., Encvclooedia of Polymer Science and Technology, John Wiley and Sons, New York, 1977, pp. 745839.
11. Schaefer, J., Stejskal, E. O., Buchdahl, R., Macromolecules, 10, 384 (1977).
12. Dickinson, L. C., Yang, H., Chu, C. W., Stein, R. S., Chien, J. C., Macromolecules, 20, 1757 (1987).
13. Alemany, L. B., Grant, D. M., Pugmire, R. J., Alger, T. D., Zilm, K. W., J. Am. Chem. Soc., 105, 2133 (1983).
14. VanderHart, D. L., Garroway, A. N., J. Chem. Phys., 21, 2773 (1979).
15. Parker, A. A., Marcinko, J. J., Shieh, Y. T., Hedrick, D. P., Ritchey, W. M., J. Appl., Polym. Sci., 40, 1717 (1990).
16. Parker, A. A., Shieh, Y. T., Ritchey, W. M., Material Research Soc. Symp. Proc., 215, 119 (1991).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed