Skip to main content Accessibility help
×
Home

Service Limitations for Oxidation Resistant Intermetallic Compounds

  • J. L. Smialek (a1), J. A. Nesbitt (a1), W. J. Brindley (a1), M. P. Brady (a1), J. Doychak (a1), R. M. Dickerson (a1) and D. R. Hull (a1)...

Abstract

Oxidation resistant intermetallic compounds based on NiAl, TiAl, and MoSi2 are of interest for high temperature applications. Each system exhibits different life-limiting degradation modes due to oxidation. β-NiAl forms protective α-Al2O3 scales. Breakdown follows well-established diffusion controlled processes resulting in survival for thousands of hours. The effect of thermal cycling and spalling is well established. Ti3Al and TiAl compounds form less protective mixed TiO2 and A12O3 scales. However at realistic use temperatures (600°–800 °C), scale growth rates are acceptably low. The critical factor is embrittlement due to interstitial oxygen diffusion over a matter of hours. Solutions based on alloy development and coatings have not been satisfactory. MoSi2 materials exhibit very low oxidation rates at very high temperatures. However, low temperature (500°C) pest oxidation can be a catastrophic transient effect. Material integrity is a key factor. Fracture occurs because of accelerated growth of non-protective mixed MoO2–SiO2 scales in pores and microcracks.

Copyright

References

Hide All
1. Lowell, C.E., Barrett, C.A., Palmer, R.W., Auping, J.V. and Probst, H.B., Oxid. Met., 36, 81 (1991).
2. Doychak, J., Barrett, C.A. and Smialek, J.L., in Corrosion & Particle Erosion at High Temperatures, edited by Srinivasan, V. and Vedula, K. (TMS, Warrendale, PA, 1989) pp. 487514.
3. Nesbitt, J.A. and Barrett, C.A., in Structural Intermetallics, edited by Darolia, R., Lewandowski, J.J., Martin, P.L., Miracle, D.B., and Nathal, M.V. (TMS Warrendale, PA, 1993) pp. 601609.
4. Nesbitt, J.A. and Vinarcik, E.J., in Damage and Oxidation Protection in High Temperature Composites, edited by Haritos, G.K. and Ochoa, O.O. (ASME, New York, NY, 1991), pp. 922.
5. Nesbitt, J.A. and Lowell, C.E., in High Temperature Ordered Intermetallics V, edited by Baker, I., Darolia, R., Whittenberger, J.D. and Yoo, M.H., (Mater. Res. Soc. Proc. 288, Pittsburgh, PA, 1993) pp. 107118.
6. Zhang, M.-X., Hsieh, K.S., DeKock, J., and Chang, Y.A., Scripta Met. et Mat. 27, 1361 (1986).
7. Pettit, F.S., Trans. TMS 239, 1296 (1967).
8. Smialek, J.L., Corrosion Science 35, 1199 (1993).
9. Kofstad, P., High Temperature Corrosion, 2nd ed., (Elsevier, New York, 1988), p. 293.
10. Welsch, G. and Kahveci, A.I., in Oxidation of High Temperature Intermetallics, edited by Grobstein, T. and Doychak, J., (TMS Warrendale, PA, 1989), pp. 207218.
11. Smialek, J.L. and Humphrey, D.H., Scripta Met. 26, 1763 (1992).
12. Ogden, H R., Maykuth, D.J., Finlay, W.L., and Jaffee, R.I., J. Metals 1953. 267.
13. Lipsitt, H A., Schechtman, D., and Schafrik, R E., Metall. Trans., 11A, 1369 (1980).
14. Balsone, S.J., in Oxidation of High Temperature Intermetallics, edited by Grobstein, T. and Doychak, J., (TMS, Warrendale, PA., 1989) pp. 219234.
15. Huang, S.C. and Hall, E L., Metall. Trans., 22a, 2619 (1991).
16. Wunderlich, W., Kremser, T., and Frommeyer, G., Z. Metallkde. 81, 802 (1990).
17. Kelly, T.J., Juhas, M.C., and Huang, S.C., Scripta Met. et Mat. 29, 1409 (1993).
18. Rowe, R.G., Konitzer, D.G., Woodfield, A.D., and Chestnutt, J.C., in High Temperature Ordered Intermetallic Alloys V, edited by Johnson, L A., Pope, D P., and Stigler, J O., (Mater. Res. Soc. Proc. 213, Pittsburgh, PA, 1991) pp. 703708.
19. Kumar, K.S. and Brown, S.A., Acta Metall. et Mater. 40, 1923 (1992).
20. Kumar, K.S. and Brown, S.A., Phil. Mag. A65, 91 (1992).
21. Chaze, A.M and Coddet, C., J. Less Common Met. 124, (1986).
22. Brindley, W.J., Smialek, J.L., and Gedwill, M A., in HITEMP Review 1992, NASA CP 10104 (1992), pp. 41.1–41.15.
23. Weidemann, K.E., Sankaran, S.N., Clark, S.N., and Wallace, T.A., in Oxidation of High Temperature Intermetallics, edited by Grobstein, T. and Doychak, J., (TMS Warrendale, PA, 1989), pp. 219234.
24. McKee, D.W., presented at Aeromat 92, Anaheim, CA, 1992 (unpublished).
25. Brindley, W.J. and Smialek, J.L., in HITEMP Review 1993, NASA CP 19117 (1993) pp. 34.1–34.12.
26. Subrahmanyam, J., J. Mat. Sci. 23, 1906 (1988).
27. Mabuchi, H., Asai, T., and Nakayama, Y, Scripta Met. 23, 685 (1989).
28. Smialek, J.L., Gedwill, M.A., and Brindley, P.K., Scripta Met. et Mat. 24, 1291 (1990).
29. Zhang, S., Nic, J.P., and Mikkola, D.E., Scripta Met. et Mat. 24, 57 (1990).
30. Parfitt, L.J., Smialek, J.L., Nic, J.P., and Mikkola, D.E., Scripta Met. et Mat. 25, 727 (1991).
31. Meier, G.H., Birks, N., Pettit, F.S., and Grabke, H.J., in Structural Intermetallics, edited by Darolia, R., Lewandowski, J.J., Martin, P.L., Miracle, D.B., and Nathal, M.V. (TMS Warrendale, PA, 1993) pp. 861877.
32. Meier, G.H. et al., Mater. Sci. Eng. A155, 165 (1992).
33. McKee, D.W. and Huang, S.C., Corrosion Science 33, 1899 (1992).
34. Klansky, J.L., Nic, J.P., and Mikkola, D.E., J. Mater. Res. 9, 255 (1994).
35. Brady, M.P., Smialek, J.L., and Humphrey, D. L., in High Temperature Ordered Intermetallics VI, edited by Horton, J., Noebe, R., Baker, I., and Hanada, S., (Mater. Res. Soc, This Proceedings, Pittsburgh, PA, 1994).
36. Meschter, P.J., Metall. Trans. 23A, 1763 (1992).
37. Chou, T.C. and Nieh, T.G., Scripta Met. et Mat. 27, 19 (1992).
38. Berztiss, D.A., Cerchiara, R.R., Gulbransen, E.A., Pettit, F.S. and Meier, G.H., Mater. Sci. Eng. A155, 165 (1992).
39. Doychak, J. and Hebsur, M.G. in Microscopy of Oxidation, edited by Bennett, M. and Lorimer, G. W. (Institute of Metals, London, 1991), pp. 206224.
40. Doychak, J., Dickerson, R., and Hull, D., NASA Lewis Research Center, 1993 (unpublished research).
41. Chou, T.C. and Nieh, T.G., J. Mater. Res. 8, 1605 (1993).
42. Jacobson, N.S., J. Amer. Ceram. Soc. 76, 3 (1993).
43. Robinson, R.C., Stearns, C.A., and Smialek, J.L., NASA Lewis Research Center, 1994 (unpublished research).
44. Zheng, Z., Tressler, R.E., and Spear, K.E., Corrosion Science 33, 569 (1992).

Related content

Powered by UNSILO

Service Limitations for Oxidation Resistant Intermetallic Compounds

  • J. L. Smialek (a1), J. A. Nesbitt (a1), W. J. Brindley (a1), M. P. Brady (a1), J. Doychak (a1), R. M. Dickerson (a1) and D. R. Hull (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.