Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T02:44:51.643Z Has data issue: false hasContentIssue false

Semi-Empirical Model for Boron Diffusion During Rapid Thermal Annealing of BF2 Implanted Silicon

Published online by Cambridge University Press:  21 February 2011

Tzu-Hsin Huang
Affiliation:
Microelectronics Research Center Department of Electrical and Computer EngineeringThe University of Texas at Austin, Austin, TX 78712
H. Kinoshita
Affiliation:
Microelectronics Research Center Department of Electrical and Computer EngineeringThe University of Texas at Austin, Austin, TX 78712
D. L. Kwong
Affiliation:
Microelectronics Research Center Department of Electrical and Computer EngineeringThe University of Texas at Austin, Austin, TX 78712
Get access

Abstract

The mechanism of the enhanced diffusion of boron during rapid thermal annealing (RTA) of BF2-implanted Si has been investigated, and a diffusion model is accordingly developed for a wide range of implant and annealing conditions. Simulation results are in excellent agreement with experiments for BF2 implant doses from 2×1013 to 5×1015cm−2, implant energies from 6 to 45 keV, and annealing temperatures from 950 to 1100°C. This model not only accounts for the transient enhanced diffusion due to the annealing of point-defect clusters and dislocation loops, but also for the retarded diffusion due to dopant precipitation. All the parameters used in this model are analytically determined.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ozturk, M. C., Wortman, J. J., and Fair, R. B., Appl. Phys. Lett. 52, 963 (1986).Google Scholar
2. Ohyu, K., Itoga, T., and Natsuaki, N., Jap. J. Appl. Phys. 29, 457 (1990).Google Scholar
3. Miyake, M., J. Electrochem. Soc. 137, 2860 (1990).Google Scholar
4. Wilson, R. G., J. Appl. Phys. 54, 6879 (1983).Google Scholar
5. Singh, R., J. Appl. Phys. 63, R59 (1988).Google Scholar
6. Michel, A. E., Nucl. Intr. and Meth. in Phys. Res. B37/38, 379 (1989).Google Scholar
7. Kim, Y., Massoud, H. Z. and Fair, R. B., J. of Electronic Materials, 18, 143 (1989).Google Scholar
8. Kinoshita, H. and Kwong, D. L. to be published in J. Electrochem. Soc. (1992).Google Scholar
9. Ho, C. P., Plummer, J. D. and Dutton, R. W., IEEE Trans. Electron Dev. 30, 1438 (1983).Google Scholar
10. Fahey, P. M., Griffin, P. B., and Plummer, J. D., Rev. Mod. Phy. 61, 289 (1989).Google Scholar
11. Solmi, S., Baruffaldi, F. and Canteri, R. J. Appl. Phys. 69, 2135 (1991).Google Scholar
12. Mazzone, A. M., Phys. Status Solidi A 95, 149 (1986).Google Scholar
13. Servidori, M., Zaumseil, P., Winter, U., Cembali, F. and Mazzone, A. M., Nucl. Instrum. Methods B 22, 497 (1987).Google Scholar
14. Solmi, S., Anglucci, R., Cembali, F., Servidori, M. and Anderle, M., Appl. Phys. Lett. 51, 331 (1987).Google Scholar
15. Jones, K. S., Prussion, S. and Weber, E. R., J. Appl. Phys. A 45, 1 (1988).Google Scholar
16. Sedgwick, T. O., Michel, A. E., Deline, V. R., and Cohen, S. A., J. Appl. Phys. 63, 1452 (1988).Google Scholar
17. Bao, X., Guo, Q., Hu, M. and Feng, D., J. Appl. Phys. 66, 1475 (1989).Google Scholar
18. Kim, Y. M., Lo, G. Q., Kinoshita, H., and Kwong, D. L., J. Electrochem. Soc. 138, 1122 (1991).Google Scholar
19. Servidori, M., Anglucci, R., Cembali, F., Negrini, P., Solmi, S., Zaumseil, P. and Winter, U., J. Appl. Phys. 61, 1834 (1987).Google Scholar
20. Carter, C. and Maszara, W., Sadana, D. K. and Rozgonyi, G. A. Liu, J. and Wortman, J., Appl. Phys. Lett. 44, 459 (1984).Google Scholar
22. Hodgson, R. T., Dwline, V., Mader, S. M., Morehead, F. F. and Gelpey, J. C., Mater. Res. Soc. Symp. Proc. 23, 253 (1984).Google Scholar
21. Huang, T.-H., MS Thesis, University of Taxes.Google Scholar
23. Tsai, M. Y., Streetman, B. G., Williams, P. and Evans, C. A. Jr., Appl. Phys. Lett. 32, 144 (1978).Google Scholar
24. Streetman, B. G., Solid State Electronic Devices, 3rd ed. (Prentice-Hall International, New Jersey, 1990), p. 444.Google Scholar