Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-20T05:27:15.729Z Has data issue: false hasContentIssue false

Semiconductor Septum ELectrochemical Photovoltaic Cell

Published online by Cambridge University Press:  10 February 2011

H.Ti Tien
Affiliation:
Membrane Biophysics Lab (Giltner Hall), Physiology Department, Michigan State University East Lansing, MI 48824, USA
Pengcheng Ren
Affiliation:
Qingdao Institute of Chemical Technology, Qingdao 266042, PRC
Wenxiu Luo
Affiliation:
Qingdao Institute of Chemical Technology, Qingdao 266042, PRC
Zhongke Tan
Affiliation:
Qingdao Institute of Chemical Technology, Qingdao 266042, PRC
Angelica L. Ottova
Affiliation:
Permanent address: Center for Interface Sciences, Microelectronics Department, Slovak Technical University, Bratislava, Slovak Republic
Get access

Abstract

We report the use of semiconductor septum electrochemical photovoltaic (SC-SEP) cell, modeled after green plant photosynthesis, in an application of solar energy conversion. A SC-SEP cell consists of a thin film of CdSe deposited on a metallic substrate (Ti, Ni, or stainless steel) as a bipolar septum electrode separating two aqueous solutions. It has been established that, upon irradiation of the septum electrode with visible light of the solar spectrum, photogenerated electron-hole pairs are separated under the influence of electric field. On the side of the septum electrode facing the light, the most powerful oxidant (holes) will oxidize species in the bathing solution, while the most powerful reducing agent (electrons) present on the dark side will carry out reduction of heavy metal ions or evolve hydrogen from aqueous solutions including seawater. Specifically, we report the use of photon energy generated electrons and ‘holes’ for the cleavage water to hydrogen and/or valuable chemicals in SC-SEP cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fox, M.A., Topics in Current Chemistry, 159:68 (1991)Google Scholar
2. Zhang, B.-W., Tung, C.-H. and Wu, S.-K. (eds.) Advances in Photochemistry, lAP, Pergamon Press, p. 354 (1989)Google Scholar
3. Rosa, DeLa, , M. A., Navarro, J. A. and Roncel, M., Appl. Biochem. Biotech., 30, 6181 (1991).Google Scholar
4. Tien, H. T., Nature, 219:272 (1968); H. T. Tien and S. P. Verma, 277:1232 (1970);Google Scholar
5. Tien, H. T., Adv. Materials, 2, 263. 1990 Google Scholar
6. Dryhurst, G. and Niki, K., eds., Redox Chemistry and Interfacial Behavior of Biological Molecules, Plenum Publishing Corp., New York, NY, 1988. pp. 529556.Google Scholar
7. Greenbaum, E., Proc. Ind. Acad. Sci., 105 (1993) 333 Google Scholar
8. (a) Bolton, J. R. (ed.) Solar Energy and Fuels, Academic Press, NY, 1977. pp. 167225. (b) H. Gerischer, Topics in Applied Physics, 31:115 (1979).Google Scholar
9. Wrighton, M. S., Morse, D. L., Ellis, A. B., Ginley, D. S. and Ahrahamson, H. B., J. Am. Chem. Soc., 98:44 (1976)Google Scholar
10. Butler, M. A., Ginley, D. S. and Eibschutz, M., J. Appl. Phys., 48:3070 (1977)Google Scholar
11. Tien, H. T. in Solution Behavior of Surfactants, Vol. 1, edited by Mittal, K. L. and Fendler, E. J. (Plenum, NY, 1982), pp. 229240.Google Scholar
13. Yonezawa, Y., Fujiwara, H. and Sato, T., Thin Solid Films, 210–211 (1992) 736738 Google Scholar
14. Zhao, X. K., Baral, S., Rolandi, R. and Fendler, J. H., J. Am. Chem. Soc. 110 (1988) 10121024 Google Scholar
15. Tricot, Y.M., Porat, Z. and Manassen, J., J. Phys. Chem. 95 (1991) 3242 Google Scholar
16. Lamrabte, A., Janot, J. M., Bienvenue, E., Miquel, G., Seta, P., Bioelectrochem. Bioenerg. 27 (1992) 449463 Google Scholar
17. Rolandi, R., Ricci, D. and Brandt, O., J. Phys. Chem. 96:6783 (1992)Google Scholar
18. Nakanishi, H. and Yamaguchi, H.,; Bioelectrochem. Bioenerg. 32 (1993) 27–24Google Scholar
19. Yamaguchi, H. and Nakanishi, H., Biochim. Biophys. Acta, 1148 (1993) 179184; Sensors&Actuators B, 13–14 (1993) 376–379Google Scholar
20. Dobek, A., Paillotin, G., Gapinski, J., Breton, J., Leibl, W., Trissl, H.-W., J. Theoret. Biol. 170 (1994) 129 Google Scholar
21. Bi, Z.-C., Qian, Y.Y., Huang, J.-P., Xiao, Z.-J. and Yu, J.-Y., J. Photochem. Photobiol. A: Chem. 77 (1994) 37 Google Scholar
22. Jackowska, K. and Tien, H. T., Solar Cells, 23, 147 (1988)Google Scholar
23. Tien, H. T., Bhardwaj, C. and Bhardwaj, R. C., B. Electrochem., 4:975 (1988)Google Scholar
24. Ottova, A., Otto, M. and Cerhata, D., B. Electrochem., 7, 232 (1991)Google Scholar
25. Goc, J. and Tien, H. T., Int'l J. Hydrogen Energy, 18, 5 (1993).Google Scholar
26. Tien, H. T. and Ottova, A. L., in Proc. the 2nd Int'l Symp. on New Trends in Photoelectrochemistry (A. Fujishima, ed.), March 22–24, 1994, the University of Tokyo, Japan.Google Scholar
27. Patil, P.S. and Pawar, S.H., Bull. Electrochem., Vol.5, 617 (1989).Google Scholar
28. Pawar, S.H. and Patil, P.S., Bull. Electrochem., Vol.6 (6), 618621 (1990).Google Scholar
29. Cal, N., Jiang, M., Dong, Q., and Jian, C., Aeta Energiae Solaris Sinica, 12 (2), 155 (1991).Google Scholar
30. Murali, K.R., Subramanian, V., Rangarajan, N., Lakshmanan, A.S., and Rangarajan, S.K., J. Appl. Electrochem., Vol.22, 8789 (1992)Google Scholar
31. S. Ch. Kondapaneni, Singh, D., and Srivastava, O.N., J. Phys. Chem., 96, 8094 (1992).Google Scholar
32. Das, B. K. and Singh, S. N. (eds.) Proc. 6th Int'l Photovoltaic Science and Engineering Conf., Interscience, NY, 1992.Google Scholar
33. Tan, Z., Luo, W., Ren, P., Sun, X., Tien, H. T. and Ottova, A., Proc. Hydrogen ‘94, Cocoa Beach, FL, June 20–24 1994.Google Scholar
34. Babu, K. S., Pandey, R. N. and Scrivastava, O. N., Int. J. Hydrogen Energy, 20 (1995) 771 Google Scholar
35. Tan, Z., Luo, W., Ren, P., Sun, X., Ottova, A. and Tien, H. T., Proc. Solar'95, National Solar Energy Conference, July 15–20, 1995, Minneapolis, MNGoogle Scholar