Skip to main content Accessibility help

Semiconductor Quantum Dots for Cell Imaging

  • Zoraida Pascual Aguilar (a1), Hengyi Xu (a2), Ben Jones (a3), John Dixon (a4) and Andrew Wang (a5)...


Nanotechnology is currently undergoing unprecedented development in various fields. There has been a widespread interest in the application of nanomaterials in medicine with its promise of improving imaging, diagnostics, and therapy. The recent advances in engineering and technology have led to the development of new nanoscale platforms such as quantum dots, gold nanocrystals, superparamagnetic nanocrystals, and other semiconductor nanoparticles. Literature on the applications of quantum dots in life sciences has recently increased in number. This may have led to predictions that nanotechnology in life sciences research will contribute $3.4 billion by 2010 while institutions have predicted that the market for nanotechnology and corresponding products will reach $1 trillion in 2012 (1).

Ocean NanoTech is at the height of developmental stages of nanoparticle production for biological applications. Ocean’s high quantum-yield quantum dots (QDs) is currently being tested and used for cell imaging, as wells as for the detection of proteins, DNA, whole cells, and whole organisms. Imaging of cells involves conjugation of QDs to highly sensitive and specific antibody to form QD˜Ab conjugates that attach to specific protein target on the cell surface. Attachment of the QD˜Ab on the cell surface allows imaging of the cell under a fluorescence microscope. QD based imaging can be used in a multiplex immunoassay detection of several types of cells (or microorganisms) in a single sample when several size tunable quantum dots are used as reporter probes.

We report the QD imaging of breast cancer cells. Using the breast cancer cell line SK-BR3, which expresses high levels of her2 antigens on the cell surface, anti-her2 were conjugated to Ocean’s quantum dots, QSH620. To eliminate non-specific binding of the QD˜20Ab Ocean’s super blocking buffer BBB and BBG were used. Preliminary results of in vitro studies indicated that QD based systems can be used to image cells. We anticipate that this system can be transferred to in vivo detection.



Hide All
1 Murday, J.S. Siegel, R.W. Stein, J., Wright, J.F. Translational nanomedicine: status assessment and opportunities, Nanomedicine: Nanotechnology, Biology, and Medicine 5 (2009) 251273.
2 Yang, L., Mao, H., Wang, Y. A. Cao, Z., Peng, X., Wang, X., Duan, H., Ni, C., Yuan, Q., Adams, G., Smith, M. Q. Wood, W. C. Gao, X. and Nie, S., Small, 5, 235 (2009).
3 Rosi, N. L. and Mirkin, C. A. Chem. Rev., 105, 1547 (2005).
4 Medintz, I. L. Uyeda, H. T. Goldman, E. R. and Mattoussi, H., Nat. Mater., 4, 435 (2005).
5 Katz, E. and Willner, I., Angew. Chem. Int. Ed., 43, 6042 (2004).
6 Aguilar, Z. P. Analytical Chemistry, 78(4), 11221129 (2006).
7 Aguilar, Z. P. Fritsch, I., Analytical Chemistry, 75, 38903897 (2003).
8 Pantel, K., Brakenhoff, R. H. and Brandt, B.. Nat. Rev. Cancer., 8, 329 (2008).
9 Horner, M. J. Ries, L. A. G. Krapcho, M., Neyman, N., Aminou, R., Howlader, N., Altekruse, S. F. Feuer, E. J. Huang, L., Mariotto, A., Miller, B. A. Lewis, D. R. Eisner, M. P. Stinchcomb, D. G. and Edwards, B. K. SEER Cancer Statistics Review: 1975-2006, National Cancer Institute, Bethesda (2009).
10 Goldhirsch, A., Wood, W. C. Gelber, R. D. Coates, A. S. Thürlimann, B. and Senn, H. J. Ann. Oncol., 18, 1133 (2007).
11 Eifel, P., Axelson, J. A. Costa, J., Crowley, J., Curran, W. J. Deshler, A., Fulton, S., Hendricks, C., Kemeny, M., Kornblith, A. B. Louis, T. A. Markman, M., Mayer, R. and Roter, D., J. Natl. Cancer. Inst., 93, 979 (2001).
12 Blamey, R. W. Ellis, I. O. Pinder, S. E. Lee, A. H. S. Macmillan, R. D. Morgan, D. A. L. Robertson, J. F. R. Mitchell, M. J. Ball, G. R. Haybittle, J. L. and Elston, C. W. Eur. J. Cancer., 43, 1548 (2007).
13 Ravdin, P. M. Siminoff, L. A. Davis, G. J. Mercer, M. B. Hewlett, J., Gerson, N. and Parker, H. L. J. Clin. Oncol., 19, 980 (2001).
14 Early Breast Cancer Trialists' Collaborative Group, Lancet, 365, 1687(2005).
15 Chen, L. D. Y, Y. Li, HY, Yuan, DW, Pang. Quantum dots and their applications in cancer research Ai Zheng. 2006 May;25(5):651–6. [Article in Chinese]
16 Nida, D.L. Rahman, M. S. Carlson, K. D. Richards-Kortum, R., Follen, M., Fluorescent nanocrystals for use in early cervical cancer detection, Gynecol Oncol, 99 (3 Suppl 1): S8994 (2005).
17 Gu, W., Pellegrino, T., WJ, Parak, Boudreau, R, MA, Le Gros, Gerion, D, AP, Alivisatos, CA, Larabell, Quantum dot-based cell motility assay, Sci STKE, 2005(290)l5 (2008).
18 Sharrna, P., Brown, S., Walter, G., Santra, S., Moudgil, B., Nanoparticles for bioimaging. Adv Colloid Interface Sci, 123:471–85 (2006).
19 He, J., VanBrocklin, H. F. Franc, B. L. Seo, Y., Jones, E. F. Nanoprobes for medical diagnostics: current status of nanotechnology in molecular imaging, Curr Nanosci 4:1729 (2008).
20 Burns, A., H. Weisner, U., Fluorescent core-shell silica nanoparticles: towards qlab on a particleq architectures for nanobiotechnology. Chem Soc Rev, 35:1028–42 (2006).
21 Qian, X. M. Peng, X. H. Ansari, D. O. Yin-Goen, Q., Chen, G. Z. Shin, D. M. et al. In vivo tumor targeting and spectroscopic detection with surfaceenhanced Raman nanoparticle tags. Nat Biotechnol, 26:8390 (2008).
22 Leary, S.P. Liu, C.Y. Apuzzo, M.L.J.. Toward the emergence of nanoneurosurgery: Part II. Nanomedicine: diagnostics and imaging at the nanoscale level. Neurosurgery, 58:805–22(2006).
23 Kobayashi, H., Ogawa, M., Kosaka, N., Choyke, PL, Urano, Y.. Multicolor imaging of lymphatic function with two nanomaterials: quantum dot-labeled cancer cells and dendrimerbased optical agents. Nanomed. 4(4):411–9 (2009).
24 Zhang, H., Zeng, X, Li, Q, Gaillard-Kelly, M, CR, Wagner, Yee, D. Fluorescent tumour imaging of type I IGF receptor in vivo: comparison of antibody-conjugated quantum dots and smallmolecule fluorophore. Br J Cancer. 7;101(1):71–9 (2009).
25 Manzoor, K., Johny, S, Thomas, D, Setua, S, Menon, D, Nair S. Bio-conjugated luminescent quantum dots of doped ZnS: a cyto-friendly system for targeted cancer imaging. Nanotechnology. 20(6):65102 (2009).
26 Ko, MH, Kim, S, WJ, Kang, JH, Lee, Kang, H, SH, Moon, Hwang do, W, HY, Ko, DS, Lee. In vitro derby imaging of cancer biomarkers using quantum dots. Small. 5(10):1207–12 (2009).
27 Ghasemi, Y., Peymani, P, Afifi S., Quantum dot: magic nanoparticle for imaging, detection and targeting, Acta Biomed. 80(2):156–65 (2009).
28 J, J. Bange, Zwick, E, Ullrich, A., Molecular targets for breast cancer therapy and prevention. Nature Medicine 7: 548552 (2001).
29 Ménard, S., Pupa, S. M. Campiglio, M., Tagliabue, E, “Biologic and therapeutic role of HER2 in cancer”. Oncogene 22: 65706578 (2003).
30 Kute, T; CM, Lack, Willingham, M, Bishwokama, B, Williams, H, Barrett, K, Mitchell, T, JP, Vaughn. “Development of herceptin resistance in breast cancer cells”. Cytometry 57A: 8693 (2004).
31 Chen, H., Xue, J., Zhang, Y., Zhu, X., Gao, J., Yu., B. Comparison of quantum dots immunofluorescence histochemistry and conventional immunohistochemistry for the detection of caveolin-1 and PCNA in the lung cancer tissue microarray. J Mol Histol. Nov 12, advance print (2009).
32 Xu, H., Aguilar, Z. P. Dixon, J., Jones, B., Wang, A., Wei, H., “Breast Cancer Cell Imaging using Semiconductor Quantum Dots”, in the “First International Symposium on Semiconductor and Plasmonics-Active Nanostructures for Photonic Devices and Systems”, Vienna, Austria, ECS Transactions, 25 (11) 6977 (2009).
33 Xu, H., Aguilar, Z. P. Waldron, J. L. Wei, H., and Wang, Y. A.Application of Semiconductor Quantum Dots for Breast Cancer Cell Sensing,” Biomedical Engineering and Informatics, IEEE Computer Society, BMEI, 1:516520 (2009).


Related content

Powered by UNSILO

Semiconductor Quantum Dots for Cell Imaging

  • Zoraida Pascual Aguilar (a1), Hengyi Xu (a2), Ben Jones (a3), John Dixon (a4) and Andrew Wang (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.