Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T04:03:26.068Z Has data issue: false hasContentIssue false

Self-Organized Composition Modulation In Omvpe Ga1−xInxAsySb1−y/GaSb Epitaxial Heterostructures

Published online by Cambridge University Press:  10 February 2011

Y-C. Chen
Affiliation:
Department of Materials Science & Engineering, Rensselaer Polytechnic Institute, Troy NY
V. Bucklen
Affiliation:
Department of Materials Science & Engineering, Rensselaer Polytechnic Institute, Troy NY
K. Rajan
Affiliation:
Department of Materials Science & Engineering, Rensselaer Polytechnic Institute, Troy NY
C. A. Wang
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington MA
G. W. Charache
Affiliation:
Lockheed-Martin, Schenectady NY
G. Nichols
Affiliation:
Lockheed-Martin, Schenectady NY
M. Freeman
Affiliation:
Lockheed-Martin, Schenectady NY
P. Sander
Affiliation:
Lockheed-Martin, Schenectady NY
Get access

Abstract

Microstructures of lattice-matched Ga1−xInxAsySb1−y grown by organometallic vapor phase epitaxy (OMVPE) on (100) 6°→ (111)B GaSb substrates have been examined in detail by transmission electron microscopy. A three-dimensional self-organized composition modulation (SOCM) microstructure was found with an orientation inclined 10 degrees to the surface orientation when viewed in (011) cross-section. The periodicity of the SOCM increased from ˜13 nm to 20 nm, as x increased from 0.1 to 0.2 while the orientation of the SOCM remained the same. The fact that the orientation was not sensitive to the component composition indicated that substrate misorientation plays a major role in deciding this SOCM orientation. This may open fabrication opportunities for three-dimensional natural superlattices by engineering on the substrate misorientation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[.Ueda, O., Isozumi, S. and Komiya, S., Japanese Journal of Applied Physics 23, L241 (1984)Google Scholar
[.Chu, S. N. G., Nakahara, S., Strege, K. E., and Johnston, W. D., Jr; Journal of Applied Physics 57,4610 (1985)Google Scholar
[.Mahajan, S., Dutt, B. V., Temkin, H., Cava, R. J. and Bonner, W. A., Journal of Crystal Growth 68, 589 (1984)Google Scholar
[.McDevitt, T. L., Mahajan, S., and Laughlin, D. E.; Physical Review B 45, 6614 (1992)Google Scholar
[.Hua, G. C., Otsuka, N., Grillo, D. C., Han, J., He, L. and Gunshor, R. L., Journal of Crystal Growth 138, 367 (1994)Google Scholar
[.Chou, S. T., Cheng, K. Y., Chou, L. J., and Hseih, K. C., Journal of Applied Physics 78, 6270 (1995)Google Scholar
[.Chen, A. C., Moy, A. M., Chou, L. J., Hsieh, K. C., and Cheng, K. Y.; Applied Physics Letters 66, 2694 (1995)Google Scholar
[.Abraham, P., Perez, M. A. Garcia, Benyattou, T., Guilot, G., Sacilotti, M., and Letartre, X., Semicond. Sci. Technol. 10, 1585 (1995)Google Scholar
[.Peiro, F., Comet, A., Ferrer, J. C., Merante, J., Halkias, R. G., and Georgakilas, A.; Materials Research Society Symposium Proceedings, edited by Jones, E. D., Mascarenhas, A., and Petroff, P. (MRS, Pittsburgh, 1996) p265Google Scholar
[0.Zunger, A. and Mahajan, S., Handbook on Semiconductors, completely revised edition, edited by Moss, T. S., V3, edited by Mahajan, S., 1399 (1994)Google Scholar
[1.Millunchick, J. Mirecki, Twesten, R. D., Lee, S. R., Follstaedt, D. M., and Jones, E. D., Ahrenkie, S. P., Zhang, Y., Cheong, H. M., and Mascarenhas, A.; MRS Bulletin, 38, July (1997)Google Scholar
[2.Petroff, P. M., J. Vac. Sci. Technol. 14, 473 (1977)Google Scholar
[3.Madhukar, A., Surf. Sci. 132, 344 (1983)Google Scholar
[4.Vechten, J. A. Ven, J. Cryst. Growth 71, 326 (1985)Google Scholar
[5.Ipatova, I. P., Shchukin, V. A., Malyshkin, V. G., Maslov, A. Yu., and Anastassakis, E., Solid State Commun. 78, 19 (1991)Google Scholar
[6.Seong, T-Y., Norman, A. G., Ferguson, I. T. and Booker, G. R., J. Appl. Phys. 73, 8227 (1993)Google Scholar
[7.Ahrenkiel, S. P., Xin, S. H., Reimer, P. M., Berry, J. J., Luo, H., Short, S., Bode, M., AlJassim, M., Buschert, J. R., and. Furdyna, J. K., Physical Review Letters 75 1586 (1995)Google Scholar
[8.Chin, A., Lin, B. C., Gu, G. L. and Hsieh, K. Y., J. Appl. Phys. 79 8669 (1996)Google Scholar
[9.Follstaedt, D. M., Schneider, R. P. Jr, and Jones, E. D., J. Appl. Phys. 77, 3077 (1995)Google Scholar
[0.Wang, C. A., Choi, H.K., Oakley, D.C., Charache, G.W., J. Crystal Growth, 195, 346 (1998)Google Scholar
[1.Onabe, K., Japanese Journal of Applied Physics 21, 964 (1982)Google Scholar
[2.Barabasi, Albert-Laszlo, Appl. Phys. Lett. 70, 764 (1997)Google Scholar
[3.Onabe, K., NEC RES. & Develop., No. 72, 1 (1984)Google Scholar
[4.Rajan, K., Chen, Y-C., Bucklen, V., Wang, C., Charache, G., Nichols, G., Freeman, M. and Sander, P., 2nd International Alloy Conference, Switzerland, (1999)Google Scholar
[5.McDevitt, T. L., Mahajan, S. and Laughlin, D. E., Phys. Rev. B, 45, 6614 (1992)Google Scholar
[6.Chen, Y-C., Bucklen, V. et al., AIP Conf. Proc. 460, 535 (1999)Google Scholar