Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T18:43:09.046Z Has data issue: false hasContentIssue false

Self-Interstitials and Substitutional C in Silicon: Interstitial- Trapping and C– Clustering

Published online by Cambridge University Press:  01 February 2011

S. Mirabella
Affiliation:
INFM and Dept. of Physics and Astronomy, University of Catania, Corso Italia 57, 95129 Catania, Italy
S. Scalese
Affiliation:
INFM and Dept. of Physics and Astronomy, University of Catania, Corso Italia 57, 95129 Catania, Italy
A. Terrasi
Affiliation:
INFM and Dept. of Physics and Astronomy, University of Catania, Corso Italia 57, 95129 Catania, Italy
F. Priolo
Affiliation:
INFM and Dept. of Physics and Astronomy, University of Catania, Corso Italia 57, 95129 Catania, Italy
A. Coati
Affiliation:
INFM and Dept. of Physics, University of Padova, Via Marzolo 8, 35131 Padova, Italy
D. De Salvador
Affiliation:
INFM and Dept. of Physics, University of Padova, Via Marzolo 8, 35131 Padova, Italy
E. Napolitani
Affiliation:
INFM and Dept. of Physics, University of Padova, Via Marzolo 8, 35131 Padova, Italy
M. Berti
Affiliation:
INFM and Dept. of Physics, University of Padova, Via Marzolo 8, 35131 Padova, Italy
Get access

Abstract

The interactions between self-interstitials (I's) produced by 20 keV silicon implantation, and substitutional carbon in silicon have been studied using a Si1-yCy layer interposed between a near surface I source and a deeper B spike used as a marker for the I concentration. The Si1-yCy layer behaves as a filtering membrane for the interstitials flowing towards the bulk. This trapping ability is related to the total C amount in the Si1-yCy membrane. Substitutional carbon atoms interacting with self-interstitials are shown to trap I's, to be removed from their substitutional sites, and to precipitate into the C-rich region. After precipitation, C atoms are not able to further trap injected self-interstitials. The atomistic mechanism leading to Si-interstitial trapping has been investigated by developing a simulation code describing the migration of injected interstitials. By a comparison with the experimental data it was possible to derive quantitative indications on the trapping mechanism. It is shown that one Si-interstitial is able to deactivate about two C traps by means of interstitial trapping and C-clustering reactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fahey, P. M., Griffin, P. B., and Plummer, J. D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
2. Cowern, N. E. B., Janssen, K. T. F., Walle, G. F. A. van de, and Gravesteijn, D. J., Phys. Rev. Lett. 65, 2434 (1990).Google Scholar
3. Bracht, H., Haller, E. E., and Clark-Phelps, R., Phys. Rev. Lett. 81, 393 (1998).Google Scholar
4. Gossmann, H.J., Haynes, T. E., Stolk, P. A., Jacobson, D. C., Gilmer, G. H., Poate, J. M., Luftam, H. S., Mogi, T. K., and Thompson, M. O., Appl. Phys. Lett. 71, 3862 (1997).Google Scholar
5. Stolk, P. A., J. Gossmann, H.J., Eaglesham, D. J., Jacobson, D. C., Rafferty, C. S., Gilmer, G. H., Jaraiz, M., Poate, J. M., Luftman, H. S. and Haynes, T. E., J. Appl. Phys. 81, 6031 (1997).and references therein.Google Scholar
6. Napolitani, E., Carnera, A., Schroer, E., Privitera, V., Priolo, F., Moffatt, S., Appl. Phys. Lett. 75, 1869 (1999).Google Scholar
7. Napolitani, E., Coati, A., Salvador, D. De, Carnera, A., Mirabella, S., Scalese, S. and Priolo, F., Appl. Phys. Lett. 79, 4145 (2001).Google Scholar
8. Sadigh, B., Lenosky, T. J., Theiss, S. K., Caturla, M.J., Diaz de la Rubia, T., and Foad, M. A., Phys. Rev. Lett. 83, 4341 (1999).Google Scholar
9. Stolk, P. A., Eaglesham, D. J., Gossmann, H.J., and Poate, J. M., Appl. Phys. Lett. 66, 1370 (1995).Google Scholar
10. Mirabella, S., Coati, A., Salvador, D. De, Napolitani, E., Mattoni, A., Bisognin, G., Berti, M., Carnera, A., Drigo, A. V., Scalese, S., Pulvirenti, S., Terrasi, A., and Priolo, F., Phys. Rev. B 65, 045209 (2002).Google Scholar
11. Kalejs, J. P., Ladd, L. A., and Gösele, U., Appl. Phys. Lett. 45, 268 (1984).Google Scholar
12. Scholz, R., Gösele, U., Huh, J.Y., and Tan, T. Y., Appl. Phys. Lett. 72, 200 (1998).Google Scholar
13. Rücker, H., Heinemann, B., Röpke, W., Kurps, R., Krüger, D., Lippert, G., and Osten, H. J., Appl. Phys. Lett. 73, 1682 (1998).Google Scholar
14. Rücker, H., Heinemann, B., Bolze, D., Kurps, R., Krüger, D., Lippert, G., and Osten, H. J., Appl. Phys. Lett. 74, 3377 (1999).Google Scholar
15. Salvador, D. De, Napolitani, E., Coati, A., Berti, M., Drigo, A. V., Carroll, M. S., Sturm, J. C., Stangl, J., Bauer, G., and Lazzarini, L., in Si Front-End Processing-Physics and Technology of Dopant-Defect Interactions III, edited by Jones, K. et al., Mater. Res. Soc. Symp. Proc. No. 669 (Material Research Society, Warrendale, 2001).Google Scholar
16. Salvador, D. De, Mattoni, A., Napolitani, E., Mirabella, S., and Priolo, F., presented at 2002 MRS Spring Meeting, San Francisco, CA, 2002 (unpublished).Google Scholar
17. Salvador, D. De, Petrovich, M., Berti, M., Romanato, F., Napolitani, E., Drigo, A.V., Stangl, J., Zerlauth, S., Muhlberger, M., Schaffler, F., and Bauer, G., Phys. Rev. B 61, 13005 (2000).Google Scholar