Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-16T23:22:58.989Z Has data issue: false hasContentIssue false

Self-assembly of Semiconductor Quantum Dots by Droplet Epitaxy

Published online by Cambridge University Press:  01 February 2011

Nobuyuki Koguchi*
Affiliation:
KOGUCHI.Nobuyuki@nims.go.jp, National Institute for Materials Science, Quantum Dot Research Center, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan, +81 29 859 2700, +81 29 859 2702
Get access

Abstract

We have proposed a novel self-assembling growth method, termed Droplet Epitaxy, for the direct formation of QDs without using any lithography in 1990. Compared with the island formation based on the Stranski-Krastanow growth mode, the Droplet Epitaxy is applicable to the formation of quantum dots not only in lattice-mismatched but also in lattice-matched systems such as GaAs/AlGaAs. The process of the Droplet Epitaxy in MBE chamber consists of forming numerous III-column element droplets such as Ga or InGa with homogeneous size of around 10 nm on the substrate surface first by supplying their molecular beams, and then reacting the droplets with As molecular beam to produce GaAs or InGaAs epitaxial microcrystals. Another advantage of the Droplet Epitaxy is the possibility of the fabrication of QDs structures without wetting layer by cotrolling the stoichiometry of the substrate surface just before the deposition of III-column element droplets. Also we can control the shape of the QDs structure self-organizingly such as pyramidal shape, single-ring shape and concentric double-ring shape. These ring structures will provide excellent possibilities for the investigation of quantum topological phenomena.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schaffer, W. J., Lind, M. D., Kowalczyk, S. P. and Grant, W., J. Vac. Sci. & Technol. B1, 688 (1983).Google Scholar
2. Lewis, B. F., Grunthaner, F. J., Madhukar, A., Fernandez, R. and Maserjian, J., J. Vac. Sci. & Technol. B2, 419 (1984).Google Scholar
3. Kubiak, R. A. A., Parker, E. H. C. and Newstead, S., Appl. Phys. A 35, 61 (1984).Google Scholar
4. Goldstein, L., Glas, F., Marzin, J. Y., Charasse, M. N. and Le Roux, G., Appl. Phys. Lett. 47, 1099 (1985).Google Scholar
5. Leonard, D., Krishnamurthy, M., Reaves, C. M., Denbaas, S. P. and Petroff, P. M., Appl. Phys. Lett. 63, 3203 (1993).Google Scholar
6. Koguchi, N., Takahashi, S. and Chikyow, T., Proceed. 6th Int. Conf. MBE, La Jolla, 1990, J. Crystal Growth 111, 688 (1991).Google Scholar
7. Osaka, J., Inoue, N., Mada, Y., Yamada, K. and Wada, K., J. Crystal Growth 99, 120 (1990).Google Scholar
8. Isu, T., Hata, M. and Watanabe, A., J. Crystal Growth 111, 210 (1991).Google Scholar
9. Chikyow, T. and Koguchi, N., Jpn. J. Appl. Phys. 29, L2093 (1990).Google Scholar
10. Koguchi, N. and Ishige, K., Jpn. J. Appl. Phys. 32, 2052 (1993).Google Scholar
11. Koguchi, N., Ishige, K. and Takahashi, S., J. Vac. Sci. & Technol. B11, 787 (1993).Google Scholar
12. Chikyow, T. and Koguchi, N., Appl. Phys. Lett. 61, 2431 (1992).Google Scholar
13. Watanabe, K., Koguchi, N. and Gotoh, Y., Jpn. J. Appl. Phys. 39, L79 (2000).Google Scholar
14. Deparis, C. and Massies, J., J. Crystal Growth 108, 157 (1991).Google Scholar
15. Ohtake, A. and Koguchi, N., Appl. Phys. Lett. 83, 5193 (2003)Google Scholar
16. Ohtake, A., Kocan, P., Seino, K., Schmidt, W. G. and Koguchi, N., Phys. Rev. Lett. 93, 266101 (2004).Google Scholar
17. Sanguinetti, S., Watanabe, K., Tateno, T., Gurioli, M., Werner, P. Wakaki, M. and Koguchi, N., J. Crystal Growth 253, 71 (2003).Google Scholar
18. Daweritz, L. and Hey, R., Surf. Sci. 236, 15 (1990).Google Scholar
19. Lee, C.D., Park, C., Lee, H.J., Lee, K.S., Park, S.J., Park, C.G., Noh, S.K. and Koguchi, N., Jpn. J.Appl.Phys, 37, 7158 (1998).Google Scholar
20. Mano, T. and Koguchi, N., J. Crystal Growth 278, 108 (2005).Google Scholar
21. Mano, T., Kuroda, T., Sanguinetti, S., Ochiai, T., Tateno, T., Kim, J. S., Noda, T., Kawabe, M., Sakoda, K., Kido, G. and Koguchi, N., Nano Letters 5, 3, 425428 (2005)Google Scholar
22. Kuroda, T., Mano, T., Ochiai, T., Sanguinetti, S., Sakoda, K., Kido, G. and Koguchi, N., Phys. Rev. B72, 205301 (2005).Google Scholar
23. Wang, Z.M., Holms, K., Shults, J.L. and Salamo, G.J., Physca Status Solidi, (a) 202, R85 (2005).Google Scholar
24. Yamagiwa, M., Mano, T., Kuroda, T., Tateno, T., Sakoda, K., Kido, G. and Koguchi, N., Appl. Phys. Lett, 89, 113115 (2006).Google Scholar
25. Mano, T., Watanabe, K., Tsukamoto, S., Fujioka, H., Oshima, M. and Koguchi, N., Jpn. J. Appl. Phys. 38, L1009 (1999).Google Scholar
26. Kim, J.S. and Koguchi, N., Appl.Phys. Lett, 85, 5893 (2004).Google Scholar
27. Mano, T., Kuroda, T., Yamagiwa, M., Kido, G., Sakoda, K. and Koguchi, N., Appl. Phys. Lett, 89, 183102 (2006).Google Scholar