Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T06:45:39.662Z Has data issue: false hasContentIssue false

Self-assembled oligonucleotide semiconductor conjugated to GaN nanostructures for biophotonic applications

Published online by Cambridge University Press:  01 February 2011

A. Neogi
Affiliation:
Department of Physics, University of North Texas, Denton, TX, USA.
J. Li
Affiliation:
Department of Physics, University of North Texas, Denton, TX, USA.
A. Sarkar
Affiliation:
Michigan Molecular Institute, Midlands, MI, USA.
P. B. Neogi
Affiliation:
Department of Biology, University of North Texas, Denton, TX, USA.
B. Gorman
Affiliation:
Department of Physics, University of North Texas, Denton, TX, USA.
T. Golding
Affiliation:
Department of Physics, University of North Texas, Denton, TX, USA.
H. Morkoc
Affiliation:
Department of Electrical Eng., Virginia Commonwealth University, Richmond, VA, USA.
Get access

Abstract

We investigate the optical properties of a new class of wide-bandgap semiconductor based biomaterial system. We have synthesized a guanosine derivative with a strong dipole moment, which self-assemble in ∼ 50 –100 nm confined pits to form a ribbon like semiconductor structure (SAGC). SAGC were successfully self-assembled on GaN/AlN QD matrix and the luminescence from GaN QDs can be resonantly transferred to the SAGC molecules resulting in a significant enhancement in emission from the guanine molecules. We also propose the design of ultraviolet-visible photonic bandgap structures based on hybrid SAGC-GaN photonic crystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Braun, E., Eichen, Y., Sivan, U., Ben-Yoseph, G., Nature, 391, 775780(1998).Google Scholar
2. Okahata, Y., Kobayashi, T., Tanaka, K., and Shimomura, M., J. Am. Chem. Soc., 120, 61656166(1998).Google Scholar
3. Porath, D., Bezryadin, A., Nature, 403, 635637(2000).Google Scholar
4. Uchihasi, T., Okada, T., Sugawara, Y., Yokoyama, K. and Morita, S., S. Phys. Rev. B, 60, 83098313 (1999)Google Scholar
5. Sowerby, S.J., Edelwirth, M., and Heckl, W. M., W.M., , J. Phys. Chem. B 102, 59145922(1998).Google Scholar
6. Bumm, L. A., Arnold, J. J., Cygan, M. T., Dunbar, T. D., Burgin, T. P., Jones, L. II, Allara, D. L., Tour, J. M., and Weiss, P. S.. Science 271, 17051707(1996).Google Scholar
7. Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dossantos, D. A., Brédas, J. L., Lögdlund, M. and Salaneck, W. R., Nature, 397, 121128(1999).Google Scholar
8. Vollmer, M.S., Effenberg, F., Stecher, R., Gompf, B., Eisenmenger, W., Chem. Eur. J, 5, 96101(1999).Google Scholar
9. Samori, P., Francke, V., Mullen, K., Rabe, J.P., Chem. Eur. J, 5, 23122317(1999).Google Scholar
10. Maruccio, G., Visconti, P., Arima, V., D'Amico, S., Biasco, A., D'Amone, Eliana, Cingolani, R., Rinaldi, R., Masiero, S., Giorgi, T., and Gottarelli, G., Nano Lett. 3, 479 (2003).Google Scholar
11. Johnson, S., and Joannopoulos, J., Opt. Express, 8, 173190(2001).Google Scholar
12. Cassagne, D., Jouanin, C., Bertho, D., Phy. Rev. B, 52, R2217 (1995)Google Scholar
13. Lomer, W. M., Proc. R. Soc. London Ser. A, 227, 330 (1955)Google Scholar
14. Williamson, J.M., Curr. Opin. Struct. Biol. 3, 357 (1993)Google Scholar
15. Gottarelli, G., Masiero, S., Mezzina, E., Pieraccini, S., Rabe, J.P., Samor‘ý P, P. and Spada, G. P., Chem. Eur. J., 6, 32423248(2000).Google Scholar
16. Gottarelli, G., Masiero, S., Mezzina, E., Spada, G. P., Mariani, P., Recantini, M., Helv. Chim. Acta, 81, 20782091 (1998)Google Scholar
17. Forman, S. L., Fettinger, J.C., Pieraccini, S., Gottarelli, G., Davis, J.T., J. Am. Chem. Soc, 122(17); 40604067(2000).Google Scholar
18. Marsh, T.C., Vesenka, J., and Henderson, E., Nucl. Acids. Res., 23, 696700(1995).Google Scholar
19. Sessler, J.L., Sathiosatham, M., Doerr, K., Lynch, V., Abboud, K.A., Angew. Chem. Int. Ed., 39, 13001303 (2000).Google Scholar
20. Gerion, D., Parak, W. J., Williams, S. C., Zanchet, D., Micheel, C. M., and Alivisatos, A. P., J. Am. Chem. Soc. 124, 7070 (2002)Google Scholar
21. Neogi, A., et al., IEEE Transactions on Nanotechnology, 2, 10, 2003 Google Scholar
22. Neogi, A. et al, Applied Physics Letters, (2005)[In Press].Google Scholar