Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-08T18:05:13.743Z Has data issue: false hasContentIssue false

Selective Photochemical Dry Etching of Compound Semiconductors: Enhanced Control Through Secondary Electronic Properties

Published online by Cambridge University Press:  25 February 2011

Carol I. H. Ashby*
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185
Get access

Abstract

When laser-driven etching of a semiconductor requires direct participation of photogenerated carriers, the etching quantum yield will be sensitive to the electronic properties of a specific semiconductor material. The band-gap energy of the semiconductor determines the minimum photon energy needed for carrier-driven etching since sub-gap photons do not generate free carriers. However, only those free carriers that reach the reacting surface contribute to etching and the ultimate carrier flux to the surface is controlled by more subtle electronic properties than the lowestenergy band gap. For example, the initial depth of carrier generation and the probability of carrier recombination between the point of generation and the surface profoundly influence the etching quantum yield. Appropriate manipulation of process parameters can provide additional reaction control based on such secondary electronic properties. Applications to selective dry etching of GaAs and related materials are discussed here.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. C. Ashby, I. H., in “Physics of Thin Films,” Vol. 13, ed. Francombe, M. H. and Vossen, J. L., Academic Press, New York, 1987. pp. 151197.Google Scholar
2. Ashby, C. I. H., Appl. Phys. Lett. 45, 892 (1984).Google Scholar
3. Ashby, C. I. H. and Biefeld, R. M., Appl. Phys. Lett. 47, 62 (1985).CrossRefGoogle Scholar
4. Ashby, C. I. H. and Biefeld, R. M., J. Electrochem. Soc., to be published (1989).Google Scholar
5. Ashby, C. I. H. and Myers, D. R., in Laser and Particle-Beam Chemical Processing for Microelectronics, edited by Ehrlich, D. J., Higashi, G. S., and Oprysko, M. M., (Mater. Res. Soc. Proc. 101, Pittsburgh, PA), p. 429434.Google Scholar
6. Ashby, C. I. H., Myers, D. R., and Vook, F. L., J. Electrochem. Soc., to be published, (1989).Google Scholar
7. Ashby, C. I. H., Technical Digest, Conf. Lasers and Electro-optics, 4/26-5/1/87, Baltimore, MD, p. 300.Google Scholar
8. Smith, R. A., Semiconductors, 2nd Ed., Cambridge Univ. Press, New York, 1978, p. 229.Google Scholar
9. Tietjen, J. J. and Amick, J. A., J. Electrochem. Soc. 113, 724 (1966).CrossRefGoogle Scholar
10. Tisone, G. C., and Johnson, A. W., Appl. Phys. Lett. 42, 530 (1983).Google Scholar
11. Podlesnik, D. V., Gilgen, H. H., and Osgood, R. M Jr., Appl. Phys. Lett. 45, 563 (1984).Google Scholar
12. Chi, G. C., Ostermayer, F. W. Jr., Cummings, K. D., and Harriott, L. R., J. Appl. Phys. 60, 4012 (1986).Google Scholar
13. Ashby, C. I. H., Appl. Phys. Lett. 46, 752 (1985).Google Scholar
14. Cummings, K. D., Harriott, L. R., Chi, G. C., and Ostermayer, F. W. Jr., Appl. Phys. Lett. 48, 659 (1986).CrossRefGoogle Scholar
15. Yamamoto, A. and Yano, S., J. Electrochem. Soc. 122, 260 (1975).Google Scholar
16. Biersak, J. P. and Haggmark, L. G., Nucl. Instrum. Meth. 174, 257 (1980).Google Scholar
17. Reksten, G. M., Holber, W., and Osgood, R. M. Jr., Appl. Phys. Lett. 48, 551 (1986).Google Scholar