Skip to main content Accessibility help

Selective Oxidation to Form Dielectric Apertures for Low Threshold VCSELs and Microcavity Spontaneous Light Emitters

  • D. G. Deppe (a1), D. L. Huffaker (a1), L. A. Graham (a1), Z. Zou (a1) and S. Csutak (a1)...


Selective oxidation of AlAs (or AlGaAs) can be used to form buried, low refractive index apertures within high Q Fabry-Perot microcavities. These apertures provide electrical and optical confinement, and for vertical-cavity surface-emitting lasers (VCSELs) have resulted in ultra-low threshold room temperature lasing with threshold currents under 25 μA. When used with quantum dot light emitters, the oxide-apertured microcavity can also be used to control the spontaneous lifetime. We describe the microcavity fabrication based on high Q Fabry-Perot microcavities and selective oxidation, and design and cavity Q constraints for apertured microcavities for quantum well and quantum dot VCSELs and microcavity LEDs. Threshold current densities of quantum well VCSELs are as low as 98 A/cm2, while ground state lasing is also obtained for quantum dot VCSELs. Our initial experiments on microcavities with very small apertures and quantum dot emitters demonstrate up to a factor of 2.3 increase in the spontaneous emission rate.



Hide All
1. Huffaker, D.L., Deppe, D.G., Kumar, K., and Rogers, T.J., Appl. Phys. Lett. 65 97 (1994).
2. Lear, K.L., Choquette, K.D., Schneider, R.P., Jr., Kilcoyne, S.P., and Geib, K.M., Electron. Lett. 31 208 (1995).
3. Jager, R., Grabherr, M., Jung, C., Michalzik, R., Reiner, G., Wiegl, B., and Ebeling, K., Electron. Lett. 33, 330 (1997).
4. Deppe, D.G., Huffaker, D.L., Oh, Q.-H., Deng, H., and Deng, Q., IEEE J. Sel. Top. Quant. Electron. 3 893 (1997).
5. Yang, G.M., MacDougal, M.H., and Dapkus, P.D., Electron. Lett. 31 560 (1995).
6. Huffaker, D.L. and Deppe, D.G., Appl. Phys. Lett. 71, 1449 (1997).
7. Huffaker, D.L., Park, G., Zou, Z., Shchekin, O.B., and Deppe, D.G., Appl. Phys. Lett. 73, 2564 (1998).
8. Drexhage, K.H. in Progress in Optics, edited by E., Wolf (North-Holland, Amsterdam, 1974), Vol. XII, Chap. IV.
9. Deppe, D.G., Campbell, J.C., Kuchibhotla, R., Rogers, T.J., and Streetman, B.G., Electron. Lett. 26, 1665 (1990).
10. Rogers, T.J., Deppe, D.G., and Streetman, B.G., Appl. Phys. Lett. 57, 1858 (1990).
11. Yokoyama, H., Nishi, K., Anan, T., Yamada, H., Brorson, S.D., and Ippen, E., Appl. Phys. Lett. 57, 2814 (1990).
12. Ochi, N., Shiotani, T., Yamanishi, M., Honda, Y., and Suemune, I., Appl. Phys. Lett. 58, 2735 (1991).
13. Yamauchi, T., Arakawa, Y., and Nishioka, M., Appl. Phys. Lett. 59, 2339 (1991).
14. Huffaker, D.L., Lei, C., Deppe, D.G., Pinzone, C.J., Neff, J.G., and Dupuis, R.D., Appl. Phys. Lett. 60, 3203 (1992).
15. Purcell, E.M., Phys. Rev. 69 681 (1946).
16. Zou, Z., Shchekin, O.B., Park, G., Huffaker, D.L., and Deppe, D.G., IEEE Phot. Tech. Lett. 10 1673 (1998).
17. Graham, L.A., Huffaker, D.L., and Deppe, D.G., Appl. Phys. Lett. 74, (26 April, 199).
18. Gerard, J.M., Sermage, B., Gayral, B., Legrand, B., Costard, E., and Thierry-Mieg, V., Phys. Rev. Lett. 81, 1110 (1998).
19. Deppe, D.G., Huffaker, D.L., Shin, J., and Deng, Q., IEEE Phot. Tech. Lett. 7, 965 (1995).
20. Huffaker, D.L. and Deppe, D.G., Appl. Phys. Lett. 67, 2594 (1995).
21. Deng, Q. and Deppe, D.G., Opt. Express 2, 157 (1998).
22. Hadley, G.R., Opt. Lett. 20, 1483 (1995).
23. Deppe, D.G., Oh, T.-H., and Huffaker, D.L., IEEE Phot. Tech. Lett. 9, 713 (1997).
24. Lin, C.C., Deppe, D.G., and Lei, C., IEEE J. Quant. Electron. 30, 2304 (1994).
25. Ujihara, K., Jpn. J. Appl. Phys. 30, L901 (1991).
26. Deng, Q. and Deppe, D.G., Phys. Rev. A 53, 1036 (1996).
27. Dallesasse, J.M., Holonyak, N., Jr., Sugg, A.R., Richard, T.A., and EI-Zein, N., Appl. Phys. Lett. 57, 2844 (1990).
28. Maranowski, S.A., Sugg, A.R., Chen, E.I., and Holonyak, N., Jr., Appl. Phys. Lett. 63, 1660 (1993).
29. Wang, G., Fafard, S., Leonard, D., Bowers, J.E., Merz, J.L., and Petroff, P.M., Appl. Phys. Lett. 64, 2815 (1994).
30. Kurtenbach, A., Ruhle, W.W., and Eberl, K., Solid State Comm. 96, 265 (1995).

Selective Oxidation to Form Dielectric Apertures for Low Threshold VCSELs and Microcavity Spontaneous Light Emitters

  • D. G. Deppe (a1), D. L. Huffaker (a1), L. A. Graham (a1), Z. Zou (a1) and S. Csutak (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.