Skip to main content Accessibility help

Selective Matrimid Membranes Containing Mesoporous Molecular Sieves

  • Kenneth J. Balkus (a1), Kyle Cattanach (a1), Inga H. Musselman (a1) and John P. Ferraris (a1)


We have employed mesoporous molecular sieves in polymer membranes in an effort to enhance the permselectivity. The principal advantage of these materials is that the polymer chains can penetrate the pores reducing the nonselective voids that are often observed with inorganic additives. In this study, we have prepared Matrimid® membranes with various loadings of the all silica molecular sieve DAM-1 (Dallas Amorphous Material) as well as DAM-1 functionalized with amines in the channel wall, to enhance the gas permeability characteristics of a high performance polymer. For all gases tested (N2, O2, CO2, CH4), the permeability increased in proportion to the wt % of the amine DAM-1 present in the membrane. The addition of the amine DAM-1 resulted in modest ideal O2/N2 permselectivity, while the ideal CO2/CH4 permselectivity values were >100, depending upon the moisture content of the feed. The ideal CO2/CH4 permselectivity values are among the highest for this type of composite membrane. Details of membrane fabrication as well as permeability and permselectivity results will be presented for a range of Matrimid®/molecular sieve composites.



Hide All
1. Zimmerman, C.M., Singh, A. and Koros, W.J. J. Membr. Sci., 137, 145 (1997).
2. Fuertes, A.B., Nevaskaia, D.M. and Centeno, T.A.. Micropor. Mesopor. Mater., 33, 115 (1999).
3. Mahajan, R. and Koros, W.J., Ind. Eng. Chem. Res, 39, 2692 (2000).
4. Madhugiri, S. M.S. Thesis University of Texas at Dallas (2000).
5. Reid, B.D., Alberto Ruiz-Trevino, F., Musselman, I.H., Balkus, K.J. Jr, and Ferraris, J.P. J. Membr. Sci. 195, 181 (2000).
6. Reid, B.D., Doctoral Dissertation 2000.
7. Jia, M., Peinemann, K.-V. and Behling, R.-D.. J. Membr. Sci., 57, 289 (1991).
8. Suer, M.G., Bac, N. and Yilmaz, L., J. Membr. Sci., 91, 77 (1994).
9. Yong, H.H., Park, H.C., Kang, Y.S., Won, J. and Kim, W.N.. J. Membr. Sci., 188, 151 (2001).
10. Koros, W.J. and Mahajan, R. J. Membr. Sci., 175, 181 (2000).
11. Duval, J.-M., Mulder, M.H.V., Desgrandchamps, G. and Smolders, C.A., J. Membr. Sci. 80, 189 (1993).
12. Gur, T.M., J. Membr. Sci., 93, 283 (1994).
13. Coutinho, D. and Balkus, K.J. Jr Micropor. Mesopor. Mater. 54, 229 (2002).
14. Cattanach, K., Musselman, I.H., Balkus, K.J. Jr, and Ferraris., J. P., in Preparation.
15. Robeson, L.M., J. Membr. Sci., 62, 165 (1991).
16. Bates, E.D., MMayton, R.D., Ntai, I. and Davis, J.H Jr, J. Am. Chem. Soc. 124, 926 (2001).
17. Saha, S. and Chakma, A., Energy Conver. Mgmt. 33, 413 (1992).
18. Davis, R.A and Sandall, O.C. AICHE J. 39, 1135 (1993).
19. Quinn, R., Appleby, J.B. and Pez, G.P.. J. Membr. Sci. 104, 139 (1995).
20. Story, B.J. and Koros, W.J. J. Membr. Sci., 67, 191 (1992).
21. Mahajan, R. and Koros, W.J. Polym. Eng. Sci. 42, 1420 (2002).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed