Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-11T23:07:14.787Z Has data issue: false hasContentIssue false

Selective Area Epitaxy for Optoelectronic Devices

Published online by Cambridge University Press:  22 February 2011

H. Temkin
Affiliation:
Electrical Engineering Department, Colorado State University, Ft. Collins C080523
R. A. Hamm
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
A. Feygenson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
M. A. Cotta
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
L. R. Harriott
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D. Ritter
Affiliation:
Solid State Institute, Technion, Haifa, Israel
Y. L. Wang
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan
Get access

Abstract

We discuss the characteristics of MOMBE based selective area epitaxy useful in the preparation of optoelectronic devices. Selective area epitaxy, a process in which epitaxy is restricted only to the areas opened in a suitably prepared dielectric mask, offers a powerful method of preparing high performance devices, varying the thickness and composition of the grown layers simply by controlling the width of the open areas and monolithically integrating different device types on common substrates. Lasers, heterostructure bipolar transistors, and optoelectronic integrated circuits based on InGaAs/InP system and relying on selective area epitaxy are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wang, Y. L., Harriott, L. R., Hamm, R. A. and Temkin, H., Appl. Phys. Lett. 56, 749 (1990).Google Scholar
2. Wang, Y. L., Feygenson, A., Hamm, R. A., Ritter, D., Weiner, J. S., Temkin, H. and Panish, M. B.: Appl. Phys. Lett. 59, 443 (1991).Google Scholar
3. Chen, Q., Osinski, J. S., and Dapkus, P. D., Appl. Phys. Lett. 57, 1437 (1990).Google Scholar
4. Liu, H., Roberts, J. C., Ramdani, J., Bedair, S. M., Farari, J., Wilcot, J. P., and Decoster, D.: Appl. Phys. Lett. 58, 388 (1991)Google Scholar
5. Wang, Y. L., Temkin, H., Hamm, R. A., Yadvish, R. D., Ritter, D., Harriott, L. R., and Panish, M. B., Electron. Lett. 27, 1324 (1991).Google Scholar
6. Harem, R. A., Feygenson, A., Ritter, D., Wang, Y. L., Temkin, H., Yadvish, R. D. and Panish, M. B., Appl. Phys. Lett. 61, 592 (1992).Google Scholar
7. Cotta, M. A., Harriott, L. R., Wang, Y. L., Hamm, R. A., Wade, H. H., Weiner, J. S., Ritter, D., and Temkin, H., Appl. Phys. Lett. 61, 1936, (1992).Google Scholar
8. Kayser, O., J. Cryst. Growth, 107, 989 (1991).Google Scholar
9. Galeuchet, Y. D., Roentgen, P., and Graf, V.: J. Appl. Phys. 68, 560 (1990).Google Scholar
10. J. Chang, S. C., Carey, K. W., Turner, J. E. and Hodge, L. A.: J. Electronic Materials 19, 345 (1990)Google Scholar
11. Galeuchet, Y. D., Roentgen, P., and Graf, V., Appl. Phys. Lett 53, 2638 (1988)Google Scholar
12. Galeuchet, Y. D., Rothuizen, H., and Roentgen, P., Appl. Phys. Lett. 58, 2423 (1991)Google Scholar
13. Cotta, M. A., Harriott, L. R., Hamm, R. A., and Temkin, H., unpublishedGoogle Scholar
14. Yablonovich, E. and Kane, E. O., J. Lightwave Techn. 6, 1292 (1988)Google Scholar
15. Temkin, H., Tanbun-Ek, T., and Logan, R. A., Appl. Phys. Lett. 56, 1210 (1990)Google Scholar
16. Dumke, W. P., IEEE J. Quant. Electron. QE–11, 400 (1975)Google Scholar
17. Merz, J., Logan, R. A., Wiegman, W., Gossard, A. C., Appl. Phys. Lett. 26,337 (1975)Google Scholar
18. Reinhart, F. K. and Logan, R. A., Appl. Phys. Lett. 27, 45 (1975)Google Scholar
19. Koch, T. L., Koren, U., and Miller, B. I., Appl. Phys. Lett. 53, 1036 (1988)Google Scholar
20. Koren, U., Koch, T. L., Miller, B. I., and Shahar, A., Appl. Phys. Lett. 54, 2056 (1989)Google Scholar
21. Koren, U., Jopson, R. M., Miller, B. I., Chien, M., Young, M. G., Burrus, C. A., Giles, C. R., Presby, H. M., Raybon, G., Evanokow, J. D., Tell, B., and Brown-Goebeler, K., Appl. Phys. Lett. 59, 2351 (1991)Google Scholar
22. Tanbun-Ek, T., Andrekson, P. A., Logan, R. A., Chu, S. N. G., Coblentz, D. L., Sergent, A. M., and Wecht, K. W., IEEE Photonics Techn. Lett. 4, 685, (1992).Google Scholar
23. Chen, Y. K., Nottenburg, R. N., Panish, M. B., Hamm, R. A., and Humphrey, D. A., IEEE Electron Dev. Lett. 10, 267 (1989)Google Scholar
24. Feygenson, A., Harem, R. A., Smith, P. R., Pinto, M., Montgomery, R. K., Yadvish, R. D., and Temkin, H., Proceedings of 1992 IEDMGoogle Scholar
25. Enquist, P. M., Slater, D. B. Jr., Hutchby, J. A., Morris, A. S., and Trew, R. J., Proceedings of 1992 IEDMGoogle Scholar
26. Chandrasekhar, S., Lunardi, L. M., Gnauck, A. H., Ritter, D., Hamm, R. A., Panish, M. B., and Qua, J., Electronics Lett. 28, 466 (1991)Google Scholar
27. An, X., Temkin, H., Feygenson, A., Cotta, M. A., Logan, R. A., and Coblenz, D., Electronics Lett. 1993, to be publishedGoogle Scholar