Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T19:50:05.068Z Has data issue: false hasContentIssue false

Segregant-Assisted Growth of SiGe/Si Heterostructures and their Optical Properties

Published online by Cambridge University Press:  21 February 2011

Y. Shiraki
Affiliation:
Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153, Japan
S. Fukatsu
Affiliation:
Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153, Japan
K. Fujita
Affiliation:
Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153, Japan
T. Usami
Affiliation:
Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153, Japan
Get access

Abstract

A method to realize high quality SiGe/Si heterostructures where surface segregation seriously deteriorates the interface integrity is discussed. After clarifying the mechanism of surface segregation, a new technique, called segre-gant-assisted growth (SAG), where atoms having a strong segregation tendency are introduced at heterointerfaces is proposed and its advantages are demonstrated. Intersubband transition of electrons in the conduction band can be clearly observed even in narrow quantum wells (QWs), and the well width dependence reflecting the square shape potential is obtained in the absorption peak energy. Gas source MBE (GSMBE), which is considered to be quasi-SAG with hydrogen generated at the growth front acting as a segregant, is shown to provide high quality SiGe/Si heterostructures with abrupt interfaces. Highly efficient band edge luminescence is observed in the QWs grown by the SAG method, especially by GSMBE, and the quantum confinement effect is confirmed. Electroluminescent diodes providing band edge luminescence are fabricated by this method, suggesting a high potential for SiGe/Si heterostrucutres in device applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Harris, J. J., Ashenford, D. E., Foxon, C. T., Dobson, P. J., and Joyce, B. A.; Appl. Phys. A 33, 87 (1984)Google Scholar
2 Metzger, R. A. and Allen, F. G.; J. Appl. Phys. 55, 931 (1984)Google Scholar
3 Noël, J.-P., Rowell, N. L., Houghton, D. C., and Perovic, D. D.; App. Phys. Lett. 57, 1037 (1990)Google Scholar
4 Sturm, J. C., Manoharan, H., Lenchyshyn, L. C., Thewalt, M. L., Rowell, N. L., Noël, J.-P., and Houghton, D. C.; Phys. Rev. Lett. 66, 1362 (1991)Google Scholar
5 Usami, N., Fukatsu, S., and Shiraki, Y.; Appl. Phys. Lett. 61, 1706 (1992)CrossRefGoogle Scholar
6 Fukatsu, S., Usami, N., and Shiraki, Y.; Jpn. J. Appl. Phys. 32, 1502 (1993)CrossRefGoogle Scholar
7 Fujita, K., Fukatsu, S., Yaguchi, H., Igarashi, T., Shiraki, Y., and Ito, R.; Jpn. J. Appl. Phys. 29, L1981 (1990)Google Scholar
8 Fujita, K., Fukatsu, S., Yaguchi, H., Shiraki, Y., and Ito, R.; Appl. Phys. Lett. 59, 2240 (1991)Google Scholar
9 Fukatsu, S., Fujita, K., Yaguchi, H., Shiraki, Y., and Ito, R.; Appl. Phys. Lett. 59, 2103 (1991)Google Scholar
10 Copel, M., Reuter, C., Kaxiras, E., and Tromp, R. M.; Phys. Rev. Lett. 63, 632 (1989)CrossRefGoogle Scholar
11 Sakamoto, K., Kyoya, K., Miki, K., Matsuhara, H., and Sakamoto, T.; Jpn. J. Appl. Phys. 32, L204 (1993)CrossRefGoogle Scholar
12 Fujita, K., Fukatsu, S., Usami, N., Yaguchi, H., Shiraki, Y., and Ito, R.; Proc. 5th Int. Conf. on Shallow Impurities in Semiconductors (Kobe, 1993) (Materials Science Forum, vol. 117&118 (1993)) p. 153Google Scholar
13 Fujita, K., Fukatsu, S., Yaguchi, H., Shiraki, Y., and Ito, R.; J. Crystal Growth 127, 416 (1993)Google Scholar
14 Fujita, K., Fukatsu, S., Shiraki, Y., Yaguchi, H., and Ito, R.; Appl. Phys. Lett. 61, 210 (1992)Google Scholar
15 Usami, N., Fukatsu, S., and Shiraki, Y.; Appl. Phys. Lett. 63, (1993) 388 CrossRefGoogle Scholar
16 Fukatsu, S., Yoshida, H., Fujiwara, A., Takahashi, T., Shiraki, Y., and Ito, R.; Appl. Phys. Lett. 61 804 (1992)CrossRefGoogle Scholar
17 Ota, G., Usami, N., Fukatsu, S., and Shiraki, Y.; unpublishedGoogle Scholar
18 Fukatsu, S., Yoshida, H., Usami, N., Fujiwara, A., Takahashi, T., Shiraki, Y., and Ito, R.; Jpn. J. Appl. Phys. 31, L1319 (1992)Google Scholar
19 Van de Walle, C. G. and Martin, R. M.; Phys. Rev. B34, 5621 (1986)CrossRefGoogle Scholar
20 Fukatsu, S., Usami, N., Chinzei, T., Shiraki, Y., Nishida, A., and Nakagawa, K.; Jpn. J. Appl. Phys. 31, L1015 (1992)Google Scholar
21 Kato, Y., Fukatsu, S., Usami, N., and Shiraki, Y.; Appl. Phys. Lett. 63, 2414 (1993)CrossRefGoogle Scholar