Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T04:31:41.286Z Has data issue: false hasContentIssue false

‘Seed Layers’ for the Preparation of Hydrogenated Microcrystalline Silicon with Defined Structural Properties on Glass

Published online by Cambridge University Press:  01 February 2011

Christoph Ross
Affiliation:
Institut für Photovoltaik (IPV), Forschungszentrum Jülich, D-52425 Jülich, Germany
Yaohua Mai
Affiliation:
Institut für Photovoltaik (IPV), Forschungszentrum Jülich, D-52425 Jülich, Germany
Reinhard Carius
Affiliation:
Institut für Photovoltaik (IPV), Forschungszentrum Jülich, D-52425 Jülich, Germany
Friedhelm Finger
Affiliation:
Institut für Photovoltaik (IPV), Forschungszentrum Jülich, D-52425 Jülich, Germany
Get access

Abstract

Microcrystalline silicon with properties relevant to highly efficient solar cells can be suc-cessfully prepared on glass for material characterization if a thin intrinsic ‘seed layer’ coating of the substrate is used. This is demonstrated by a detailed structure analysis on the base of Raman spectroscopy and photothermal deflection spectroscopy. The coating turns out to be crucial (1) for achieving a crystalline content as high as that of solar cell absorber material, (2) for creating a homogeneous structure in growth direction, and (3) for extending the range of deposition pa-rameters which lead to films with high crystallinity towards the regime of amorphous growth. Regarding electrical transport, ‘seed layer’ assisted growth results in a structure dependence of the dark conductivity which is very similar to that of material grown on bare glass. Regarding optical absorption spectra, residual interference fringes, which indicate structure non-uniformities, are clearly suppressed by means of ‘seed layers’. It is concluded that appropriate ‘seed layers’ play an important role for a comprehensive characterization and development of microcrystalline silicon layers for thin film devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Collins, R. W., Koh, J., Ferlauto, A. S., Rovira, P. I., Lee, Y., Koval, R. J., and Wronski, C. R., Thin Solid Films 364, 129 (2000).10.1016/S0040-6090(99)00925-6Google Scholar
2 Cabarrocas, P. Roca i, Layadi, N., Heitz, T., Drévillon, B., and Solomon, I., Appl. Phys. Lett. 66, 3609 (1995).10.1063/1.113803Google Scholar
3 Vetterl, O., Hülsbeck, M., Wolff, J., Carius, R., and Finger, F., Thin Solid Films 427, 46 (2003).10.1016/S0040-6090(02)01237-3Google Scholar
4 Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Mück, A., Rech, B., Wagner, H., Sol. Energy Mater. Sol. Cells 62, 97 (2000).10.1016/S0927-0248(99)00140-3Google Scholar
5 Houben, L., Luysberg, M., Hapke, P., Carius, R., Finger, F., and Wagner, H., Philos. Mag. A 77, 1447 (1998).10.1080/01418619808214262Google Scholar
6 Ritter, D. and Weiser, K., Opt. Commun. 57, 336 (1986).10.1016/0030-4018(86)90270-1Google Scholar
7 Lambertz, A., Finger, F., and Carius, R., in Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, edited by Kurokawa, K., Kazmerski, L. L., McNelis, B., Yamaguchi, M., Wronski, C. R., and Sinke, W. C. (Arisumi Printing Inc, Osaka, Japan, 2003), p. 1804.Google Scholar
8 Vetterl, O., Groβ, A., Jana, T., Lambertz, A., Carius, R., and Finger, F., J. Non-Cryst. Solids 299–302, 772 (2002).10.1016/S0022-3093(01)00981-4Google Scholar
9 Carius, R., Finger, F., Backhausen, U., Luysberg, M., Hapke, P., Houben, L., Otte, M., and Overhof, H., Mater. Res. Soc. Symp. Proc. 467, 283 (1997).10.1557/PROC-467-283Google Scholar
10 Houben, L., Scholten, C., Luysberg, M., Vetterl, O., Finger, F., and Carius, R., J. Non-Cryst. Solids 299–302, 1189 (2002).10.1016/S0022-3093(01)01138-3Google Scholar