Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T06:51:37.334Z Has data issue: false hasContentIssue false

Search and Synthesis of New Family of Quasicrystals

Published online by Cambridge University Press:  01 February 2011

Tsutomu Ishimasa
Affiliation:
Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Kita-ku, Sapporo 060–8628, Japan
Shiro Kashimoto
Affiliation:
Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Kita-ku, Sapporo 060–8628, Japan
Ryo Maezawa
Affiliation:
Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Kita-ku, Sapporo 060–8628, Japan
Get access

Abstract

Starting from the Zn17Sc3 cubic approximant, new icosahedral quasicrystal was searched by substituting Zn by other metals, M, at the alloy composition of Zn75M10Sc15. In the cases of M = Mn, Fe, Co, Ni, Pd, Pt, Ag and Au, new P-type quasicrystals were discovered in as-cast alloys. In the cases of M = Fe, Co, Ni, Pd and Ag, the quasicrystals are thermodynamically stable at approximately 700 °C. This result indicates that use of an approximant crystal as a starting material is very efficient way to search new quasicrystal alloy, and many kinds of metals stabilize the quasicrystal structures; i.e. noble metals and transition elements including Mn, Fe, Co and Ni in addition to Mg. Taking the variety in base metals of Tsai-type approximants into account, this variety in additional components suggests many possibilities of undiscovered quasicrystals. The equality ofthe electron concentration, ela ≈ 2.1, in Hume-Rothery rule may be a guide to these quasicrystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tsai, A.P., Guo, J.Q., Abe, E., Takakura, H. and Sato, T.J., Nature 408 (2000) 537.Google Scholar
2. Guo, J.Q., Abe, E. and Tsai, A.P., Phys. Rev. B62 (2000) R14605.Google Scholar
3. Kaneko, Y., Arichika, Y. and Ishimasa, T., Phil. Mag. Lett. 81 (2001) 777.Google Scholar
4. Kaneko, Y., Maezawa, R., Kaneko, H. and Ishimasa, T., Phil. Mag. Lett. 82 (2002) 483.Google Scholar
5. Guo, J.Q. and Tsai, A.P., Phil. Mag. Lett. 82 (2002) 349.Google Scholar
6. Andrusyak, R.I., Ya Kotur, B. and Zavodnik, V.E., Kristallografiya 34 (1989) 996.Google Scholar
7. Ishimasa, T., Kaneko, Y. and Kaneko, H., to be published in J. Non. Cryst. Solid, cond-mat/0308478.Google Scholar
8. Lin, Q. and Corbett, J.D., private communication.Google Scholar
9. Larson, A.C. and Cromer, D.T., Acta Cryst. B27 (1971) 1875.Google Scholar
10. Palenzona, A., J. Less-Common Metals 25 (1971) 367.Google Scholar
11. Gomez, C.P and Lidin, S, Phys. Rev. B68 (2003) 024203.Google Scholar
12. Elser, V., Phil. Mag. B 73 (1996) 641.Google Scholar
13. Sands, D.E., Johnson, Q.C., Krikorian, O.H. and Kromholtz, K.L., Acta Cryst 15 (1962) 1191.Google Scholar
14. Markiv, V.Ya. and Belyavina, N.M., Dopovidi akademii nauk ukrainskoi RSR, seiya B, 12 (1983) 30.Google Scholar
15. Bruzzone, G., Fornasini, M.L. and Merlo, F., J. Less-Common Metals 22 (1970) 253.Google Scholar
16. Kashimoto, S., Maezawa, R., Kaneko, Y. and Ishimasa, T., private communication; talked in the fall meeting of Physical Society of Japan (2003) 22pTK–5.Google Scholar
17. Sysa, L.V., Kalychak, Ya.M., Galadzhun, Ya.V., Zaremba, V.I., Akselrud, L.G. and Skolozdra, R.V., J. Alloy Comp. 266 (1998) 17.Google Scholar
18. Bruzzone, G., Gazzetta Chimica Italiana 102 (1972) 234.Google Scholar
19. Kashimoto, S., Maezawa, R., Kasano, Y., Mitani, T. and Ishimasa, T., Jpn. J. Appl. Phys. 42 (2003) L1268.Google Scholar
20. Maezwa, R., Kashimoto, S. and Ishimasa, T., submitted to Phil. Mag. Lett., cond-mat/0308480.Google Scholar
21. Guo, J.Q., Abe, E. and Tsai, A.P., Proceedings of Materials Research Society Symposium, Quasicrystals Preparation, Properties and Applications, Boston, 2000, edited by Belin-Ferre, E., Thiel, P. A., Tsai, A. P. and Urban, K., Vol. 643, K2.7.1. Google Scholar
22. Friedel, J., Helv. Phys. Acta 61 (1988) 538.Google Scholar
23. Elliott, R.P. and Rostoker, W., Trans. ASM, 50 (1958) 617.Google Scholar
24. Haworth, J.B. and Hume-Rothery, W., Phil. Mag., 43 (1952) 613.Google Scholar
25. Raynor, G.V., Progress in Metal Physics, 1 (1949) 1.Google Scholar
26. Tsai, A.P., Physical Properties of Quasicrystals, (Heidelberg: Springer-Verlag, 1998), p. 5.Google Scholar
27. Kashimoto, S., Maezawa, R., Ishimasa, T., Motomura, S. and Matsuo, S., submitted to Jpn. J. Appl. Phys.Google Scholar
28. Pearson, W. B., The Crystal Chemistry and Physics of Metals and Alloys, (New York: Wiley, 1972), p. 151.Google Scholar
29. Ishimasa, T., Kaneko, Y. and Kaneko, H., J. Alloys Compounds 342 (2002) 13.Google Scholar
30. Lin, Q. and Corbett, J.D., to be published in Phil. Mag. Lett‥ Google Scholar
31. Sterzel, R., Gross, C., Kounis, A., Miehe, G., Fuess, H., Reutzel, S., Holland-Moritz, D. and Assmus, W., Phil. Mag. Lett. 82 (2002) 443.Google Scholar
32. Mitani, T. and Ishimasa, T., private communication; talked in the spring meeting of Physical Society of Japan (2003) 31aZC-10.Google Scholar