Skip to main content Accessibility help
×
Home

Scientific Basis for Storage Criteria for Interim Dry Storage of Aluminum-clad Fuels

  • R. L. Sindelar (a1), H. B. Peacock (a1), P. S. Lam (a1), N. C. Iyer (a1), M. R. Louthan (a1) and J. R. Murphy (a1)...

Abstract

An engineered system for dry storage of aluminum-clad foreign and domestic research reactor spent fuel owned by the United States Department of Energy is being considered to store the fuel up to a nominal period of 40 years prior to ultimate disposition. Scientifically-based criteria for environmental limits to drying and storing the fuels for this system are being developed to avoid excessive degradation in sealed and non-sealed (open to air) dry storage systems. These limits are based on consideration of degradation modes that can cause loss of net section of the cladding, embrittlement of the cladding, distortion of the fuel, or release of fuel and fission products from the fuel/clad system. Potential degradation mechanisms include corrosion mechanisms from exposure to air and/or sources of humidity, hydrogen blistering of the aluminum cladding, distortion of the fuel due to creep, and interdiffusion of the fuel and fission products with the cladding.

The aluminum-clad research reactor fuels are predominantly highly-enriched aluminumuranium alloy fuel which is clad with aluminum alloys similar to 1100, 5052, and 6061 aluminum. In the absence of corrodant species, degradation due to creep and diffusion mechanisms limit the maximum fuel storage temperature to 200°C. The results of laboratoryscale corrosion tests indicate that this fuel could be stored under air up to 200°C at low relative humidity levels (< 20%) to limit corrosion of the cladding and fuel (exposed to the storage environment through assumed pre-existing pits in the cladding). Excessive degradation of fuels with uranium metal up to 200°C can be avoided if the fuel is sufficiently dried and contained in a sealed system; open storage can be achieved if the temperature is controlled to avoid excessive corrosion even in dry air.

Copyright

References

Hide All
1. Abbott, David G., Bringhurst, Allan R., and Denzel, Dr. Fillmore, L., in DOE Spent Nuclear Fuel Challenges & Initiatives, p. 10, American Nuclear Society, ANS Order No. 700214, La Grange Park, IL, 1994.
2. Gilbert, E. R., Bailey, W. J., Johnson, A. B. Jr., and McKinnon, M. A., Nuclear Technology Vol.89, February 1990, pp. 141161.
3. Schneider, K. J., Mitchell, S. J., and Johnson, A. B. Jr., in High-Level Radioactive Waste Management. Proceedings of the Third International Conference, American Nuclear Society, La Grange Park, IL, 1992, pp. 11591165.
4. Sindelar, R. L., Peacock, H. B. Jr., Iyer, N. C., and Louthan, M. R. Jr., in High-Level Radioactive Waste Management. Proceedines of the Sixth International Conference,American Nuclear Society, La Grange Park, IL, 1995, p. 647.
5. Sindelar, R. L., Caskey, G. R., Peacock, H. B. Jr., and Lam, P. S., in High-Level Radioactive Waste Management. Proceedings of the Sixth International Conference, American Nuclear Society, La Grange Park, IL, 1995.
6. DOE/SNF/PP001, Rev. 1, Draft June 30, 1995, U. S. Department of Energy, Environmental Management, Office of Spent Fuel Management and Special Projects.
7. Peacock, H. B. Jr., Sindelar, R. L., and Lam, P. S., in proceedings of the 18th International Meeting on Reduced Enrichment for Research and Test Reactors, September 18–21, 1995, Paris, France.
8. Snelgrove, J. L., Hoffman, G. L., Frontroth, R. L., McDonell, W. R., Peacock, H. B., Whitacre, R. F., and Copeland, G. L., ANL/NPR-90/008, Argonne National Laboratory, March 1990.
9. Hoffman, G. L., Sugondo, S., and Neimark, L. A., results to be presented at the DOE Spent Nuclear Fuel & Fissile Material Management Conference, Embedded Topical Meeting, Reno Nevada, June 1996.
10. Burke, S. D. and Howell, J. P., in DOE Spent Nuclear Fuel Challenges & Initiatives, p. 118, American Nuclear Society, ANS Order No. 700214, La Grange Park, IL, 1994.
11. Johnson, A. B. Jr., ”Bases for Extrapolating Materials Durability in Fuel Storage Pools,” in DOE Spent Nuclear Fuel Challenges & Initiatives, p. 83, American Nuclear Society, ANS Order No. 700214, La Grange Park, IL, 1994.
12. Louthan, M. R., Jr. and Iyer, N. C., in DOE Spent Nuclear Fuel Challenges & Initiatives, p. 333, American Nuclear Society, ANS Order No. 700214, La Grange Park, IL, 1994.
13. Godard, H. P., Jepsom, W. B., Bothwell, M. R., and Kane, R. L., The Corrosion of Light Metals, John Wiley & Sons, Inc., 1967.
14. Alwitt, R. S., The Aluminum-Water System, Chapter 3 in Oxides and Oxide Films, Vol.4, pp. 169254, ed. by Diggle, J. W., Marcel Dekker, New York, 1976.
15. Field, D. J., Oxidation of Aluminum and Its Alloys, Chapter 19, Aluminum Alloys - Contemporary Research and Applications, ed. by Vasudevan, A. K. and Doherty, R. D., Vol. 31 Treatise on Materials Science and Technology, Academic Press, Inc. Boston, MA, 1989
16. Hunter, M. S. and Fowle, P., J. Electrochemical Society, Vol. 103 (9), 482485, 1956.
17. Peacock, H. B., Jr., Sindelar, R. L., Lam, P. S., and Murphy, T. H., Westinghouse Savannah River Company report, WSRC-TR-95-0345, November 1995.
18. Bradford, S. A., in Metals Handbook, Volume 13, Corrosion, Ninth Edition, ASM International, 1987.
19. Vernon, W. H. J., Trans. Farad. Soc., Vol.27, 1931, p. 255.
20. Graedel, T. E., J. Electrochemical Society, Vol. 136 (4) p. 204C, April 1989.
21. Aziz, P. M. and Godard, H. P., Journal of Industrial and Engineering Chemistry, 44 (8), August 1952.
22. Maiya, P. S. and Kassner, T. F., Argonne National Laboratory, ANL/ACTV-91–6, (1991).
23. Ritchie, A. G., Journal of Nuclear Materials, Vol.102, 170182, 1981.
24. Bennett, M. J., Myatt, B. L., Silvester, D. R. V., and Antill, J. E., J. Nuclear Materials, Vol. 57, pp. 221236, 1975.
25. Bennett, M. J. and Price, J. B., Journal of Nuclear Materials, Vol.101, 4455, 1981.
26. McGillivray, G. W., Green, D. A., and Greenwood, R. C., Journal of Nuclear Materials, 208 (1994) pp. 8197.
27. Louthan, M. R., Jr. and Derrick, R. G., Met. Trans., 6A, 16551657, 1975.
28. Blackburn, P. E. and Gulbransen, E. A., Jnl Electrochemical Society, Vol.107 (12), 944950, 1960.
29. Draley, J. E. and Ruther, W. E., Jnl. Electrochemical Society, Vol.104 (6), 329333, 1957.
30. Leidheiser, H. Jr., and Das, N., Jnl. Electrochemical Society, Vol.122 (5), 640641, 1975.
31. Alani, R. and Swann, P. R., British Corrosion Journal, Vol.12 (2), pp. 8085, 1977.
32. Miller, R. F. and Sindelar, R. L., Westinghouse Savannah River Company report WSRC-TR-95-0121, April 1995.
33. Caskey, G. R., Jr., Westinghouse Savannah River Company report WSRC-TR-93-502, September 1993.
34. Farrell, K. and King, R. T., Met. Trans., Vol.4, 12231231, 1973.
35. Solbrig, C. W., Krsul, J. R., and Olsen, D. N., in DOE Spent Nuclear Fuel Challenges & Initiatives, p. 89, American Nuclear Society, ANS Order No. 700214, La Grange Park, IL, 1994.

Related content

Powered by UNSILO

Scientific Basis for Storage Criteria for Interim Dry Storage of Aluminum-clad Fuels

  • R. L. Sindelar (a1), H. B. Peacock (a1), P. S. Lam (a1), N. C. Iyer (a1), M. R. Louthan (a1) and J. R. Murphy (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.